Home
Class 12
MATHS
If (x^(4)+2x i)-(3x^(2)+yi)=(3-5i)+(1+2y...

If `(x^(4)+2x i)-(3x^(2)+yi)=(3-5i)+(1+2yi)`
then the number of ordered pairs (x, y) is/are equal to
`{AA x,y in R and i^(2)=-1}`

A

0

B

1

C

2

D

3

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \((x^4 + 2xi) - (3x^2 + yi) = (3 - 5i) + (1 + 2yi)\), we will follow these steps: ### Step 1: Rearranging the Equation Start by rewriting the equation: \[ x^4 + 2xi - 3x^2 - yi = 3 - 5i + 1 + 2yi \] Combine the terms on the right-hand side: \[ x^4 + 2xi - 3x^2 - yi = 4 - 5i + 2yi \] ### Step 2: Move All Terms to One Side Now, move all terms to the left side: \[ x^4 + 2xi - 3x^2 - yi - 4 + 5i - 2yi = 0 \] This simplifies to: \[ x^4 - 3x^2 - 4 + (2x - 3y + 5)i = 0 \] ### Step 3: Separating Real and Imaginary Parts For the equation to hold true, both the real and imaginary parts must equal zero: 1. Real part: \[ x^4 - 3x^2 - 4 = 0 \] 2. Imaginary part: \[ 2x - 3y + 5 = 0 \] ### Step 4: Solving the Real Part Now, solve the real part: \[ x^4 - 3x^2 - 4 = 0 \] Let \(u = x^2\), then the equation becomes: \[ u^2 - 3u - 4 = 0 \] Using the quadratic formula \(u = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}\): \[ u = \frac{3 \pm \sqrt{(-3)^2 - 4 \cdot 1 \cdot (-4)}}{2 \cdot 1} = \frac{3 \pm \sqrt{9 + 16}}{2} = \frac{3 \pm 5}{2} \] This gives us: \[ u = 4 \quad \text{or} \quad u = -1 \] Since \(u = x^2\), we have: \[ x^2 = 4 \quad \Rightarrow \quad x = 2 \text{ or } x = -2 \] \(x^2 = -1\) does not yield real solutions. ### Step 5: Solving the Imaginary Part Now substitute \(x = 2\) and \(x = -2\) into the imaginary part equation \(2x - 3y + 5 = 0\). 1. For \(x = 2\): \[ 2(2) - 3y + 5 = 0 \quad \Rightarrow \quad 4 - 3y + 5 = 0 \quad \Rightarrow \quad 9 - 3y = 0 \quad \Rightarrow \quad 3y = 9 \quad \Rightarrow \quad y = 3 \] 2. For \(x = -2\): \[ 2(-2) - 3y + 5 = 0 \quad \Rightarrow \quad -4 - 3y + 5 = 0 \quad \Rightarrow \quad 1 - 3y = 0 \quad \Rightarrow \quad 3y = 1 \quad \Rightarrow \quad y = \frac{1}{3} \] ### Step 6: Conclusion The ordered pairs \((x, y)\) are: 1. \((2, 3)\) 2. \((-2, \frac{1}{3})\) Thus, the number of ordered pairs \((x, y)\) is **2**.
Promotional Banner

Similar Questions

Explore conceptually related problems

Find x and y if (x^4+2x i)-(3x^2+y i)=(3-5i)+(1+2y i)

If Z = x^2 - 7x - 9yi such that bar Z = y^2 i + 20i - 12 then the number of order pair (x,y) is :

If x lt 4 " and " x, y in {1, 2, 3, .., 10} , then find the number of ordered pairs (x,y).

If 8x+i(2x-y)=3 -8i and x,y in R then the values of x and y are

2.The number of ordered pair(s) (x,y) satisfying y = 2 sinx and y = 5x² + 2x + 3 is equal to-

Find the values of x and y , if x + 4yi = ix + y + 3 where x ,y in R

Find the ordered pair (x ,y) for which x^2-y^2-i(2x+y)=2idot

Which of the following ordered pairs (x, y) satisfies the inequality 5x − 3y lt 4 ? I.(1,1) II.(2,5) III.(3,2)

The number of ordered pairs (x, y) of real number satisfying 4x^2 - 4x + 2 = sin^2 y and x^2 + y^2 <= 3 equal to

Find the values of x and y , if 2 x + 3yi = 2+ 12i , where x, y in R