Home
Class 12
MATHS
If the magnitude of the projection of th...

If the magnitude of the projection of the vector `hati-hatj+2hatk` on the vector perpendicular to the plane containing the vectors `2hati+hatj+3hatk and hati-hatj-2hatk` is k, then the value of `(1)/(k^(2))` is equal to

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem step by step, we will follow the outlined process in the video transcript. ### Step 1: Identify the vectors We have two vectors: - \( \mathbf{A} = \hat{i} - \hat{j} + 2\hat{k} \) - \( \mathbf{B_1} = 2\hat{i} + \hat{j} + 3\hat{k} \) - \( \mathbf{B_2} = \hat{i} - \hat{j} - 2\hat{k} \) ### Step 2: Find the vector perpendicular to the plane formed by \( \mathbf{B_1} \) and \( \mathbf{B_2} \) To find a vector perpendicular to the plane formed by \( \mathbf{B_1} \) and \( \mathbf{B_2} \), we can use the cross product: \[ \mathbf{B} = \mathbf{B_1} \times \mathbf{B_2} \] Calculating the cross product: \[ \mathbf{B} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 2 & 1 & 3 \\ 1 & -1 & -2 \end{vmatrix} \] Expanding this determinant: \[ \mathbf{B} = \hat{i} \begin{vmatrix} 1 & 3 \\ -1 & -2 \end{vmatrix} - \hat{j} \begin{vmatrix} 2 & 3 \\ 1 & -2 \end{vmatrix} + \hat{k} \begin{vmatrix} 2 & 1 \\ 1 & -1 \end{vmatrix} \] Calculating the determinants: 1. For \( \hat{i} \): \[ 1 \cdot (-2) - 3 \cdot (-1) = -2 + 3 = 1 \] 2. For \( \hat{j} \): \[ 2 \cdot (-2) - 3 \cdot 1 = -4 - 3 = -7 \quad \text{(note the negative sign)} \] 3. For \( \hat{k} \): \[ 2 \cdot (-1) - 1 \cdot 1 = -2 - 1 = -3 \] Putting it all together: \[ \mathbf{B} = \hat{i} - (-7)\hat{j} - 3\hat{k} = \hat{i} + 7\hat{j} - 3\hat{k} \] ### Step 3: Calculate the projection of \( \mathbf{A} \) on \( \mathbf{B} \) The formula for the projection of vector \( \mathbf{A} \) onto vector \( \mathbf{B} \) is given by: \[ \text{Projection of } \mathbf{A} \text{ on } \mathbf{B} = \frac{\mathbf{A} \cdot \mathbf{B}}{|\mathbf{B}|} \] Calculating \( \mathbf{A} \cdot \mathbf{B} \): \[ \mathbf{A} \cdot \mathbf{B} = (1)(1) + (-1)(7) + (2)(-3) = 1 - 7 - 6 = -12 \] Now, we need the magnitude of \( \mathbf{B} \): \[ |\mathbf{B}| = \sqrt{1^2 + 7^2 + (-3)^2} = \sqrt{1 + 49 + 9} = \sqrt{59} \] Thus, the projection of \( \mathbf{A} \) on \( \mathbf{B} \) is: \[ \text{Projection} = \frac{-12}{\sqrt{59}} \] ### Step 4: Find \( k \) and calculate \( \frac{1}{k^2} \) Given that the magnitude of the projection is \( k \): \[ k = \left| \frac{-12}{\sqrt{59}} \right| = \frac{12}{\sqrt{59}} \] Now, we need to find \( \frac{1}{k^2} \): \[ k^2 = \left( \frac{12}{\sqrt{59}} \right)^2 = \frac{144}{59} \] Thus, \[ \frac{1}{k^2} = \frac{59}{144} \] ### Final Answer The value of \( \frac{1}{k^2} \) is: \[ \frac{59}{144} \]
Promotional Banner

Similar Questions

Explore conceptually related problems

The magnitude of the projection of the vector 2hati+3hatj+hatk on the vector perpendicular to the plane containing the vectors hati+hatj+hatk" and "hati+2hatj+3hatk , is

What is the unit vector perpendicular to the following vectors 2hati+2hatj-hatk and 6hati-3hatj+2hatk

Find a unit vector perpendicular to each of the vectors hati+2hatj-3hatk and hati-2hatj+hatk .

Find a unit vector perpendicular to both the vectors (2hati+3hatj+hatk) and (hati-hatj+2hatk) .

Find a unit vector perpendicular to both the vectors 2hati+3hatj+hatk) and (hati-hatj+2hatk) .

find the projection of the vector hati+3hatj+7hatk on the vector 7hati-hatj+8 hatk

Find the projection of the vector hati-2hatj+hatk on the vector 4hati-4hatj+7hatk .

Find a unit vector perpendicular to the plane of two vectros. veca=hati-hatj+2hatk and vecb=2hati+3hatj-hatk

The unit vector parallel to the resultant of the vectors 2hati+3hatj-hatk and 4hati-3hatj+2hatk is

Find a unit vector perpendicular to both the vectors hati-2hatj+hatk and hati+2hatj+hatk .