Home
Class 12
MATHS
The value of int(0)^(2)((x^(2)-2x+4)sin(...

The value of `int_(0)^(2)((x^(2)-2x+4)sin(x-1))/(2x^(2)-4x+5)dx` is equal to

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \[ I = \int_{0}^{2} \frac{(x^2 - 2x + 4) \sin(x - 1)}{2x^2 - 4x + 5} \, dx, \] we will follow a series of steps to simplify and evaluate it. ### Step 1: Rewrite the Integral We can rewrite the integral as: \[ I = \int_{0}^{2} \frac{(x^2 - 2x + 4) \sin(x - 1)}{(2x^2 - 4x + 5)} \, dx. \] ### Step 2: Completing the Square Next, we complete the square for the quadratic expressions in the numerator and denominator. 1. **Numerator**: \[ x^2 - 2x + 4 = (x - 1)^2 + 3. \] 2. **Denominator**: \[ 2x^2 - 4x + 5 = 2(x^2 - 2x + \frac{5}{2}) = 2((x - 1)^2 + \frac{3}{2}). \] Thus, we can rewrite the integral as: \[ I = \int_{0}^{2} \frac{((x - 1)^2 + 3) \sin(x - 1)}{2((x - 1)^2 + \frac{3}{2})} \, dx. \] ### Step 3: Substitution Let \( t = x - 1 \). Then \( dx = dt \) and the limits change as follows: - When \( x = 0 \), \( t = -1 \). - When \( x = 2 \), \( t = 1 \). The integral now becomes: \[ I = \int_{-1}^{1} \frac{(t^2 + 3) \sin(t)}{2(t^2 + \frac{3}{2})} \, dt. \] ### Step 4: Simplifying the Integral This can be simplified to: \[ I = \frac{1}{2} \int_{-1}^{1} \frac{(t^2 + 3) \sin(t)}{(t^2 + \frac{3}{2})} \, dt. \] ### Step 5: Analyzing the Function Let \[ f(t) = \frac{(t^2 + 3) \sin(t)}{(t^2 + \frac{3}{2})}. \] We need to check if \( f(t) \) is an odd function. Calculating \( f(-t) \): \[ f(-t) = \frac{((-t)^2 + 3) \sin(-t)}{((-t)^2 + \frac{3}{2})} = \frac{(t^2 + 3)(-\sin(t))}{(t^2 + \frac{3}{2})} = -f(t). \] Since \( f(-t) = -f(t) \), \( f(t) \) is an odd function. ### Step 6: Evaluating the Integral The integral of an odd function over a symmetric interval around zero is zero: \[ I = \frac{1}{2} \int_{-1}^{1} f(t) \, dt = 0. \] ### Final Answer Thus, the value of the integral is: \[ \boxed{0}. \]
Promotional Banner

Similar Questions

Explore conceptually related problems

int(2x+1)/(x^(2)+4x-5)dx

int(1)/(x^(2)+4x+13)dx is equal to

The value of int_(-1)^(1)((x^(2)+ sin x)/(1+x^(2)))dx is equal to

The value of the integral int_(0)^(4)(x^(2))/(x^(2)-4x+8)dx is equal to

If int_(0)^(pi)((x)/(1+sinx))^(2) dx=A, then the value for int_(0)^(pi)(2x^(2). cos^(2)x//2)/((1+ sin x^(2)))dx is equal to

int_(0)^(2) (1)/(4+x+x^(2))dx

int(x^(9))/((4x^(2)+ 1)^(6))dx is equal to

int ((x+2)/(x+4))^2 e^x dx is equal to

int ((x+2)/(x+4))^2 e^x dx is equal to

int((1)/(5)-(2)/(x^5)+2x)dx is equal to …