Home
Class 12
MATHS
If 0ltalpha,betaltpi and cos alpha+cos b...

If `0ltalpha,betaltpi` and `cos alpha+cos beta -cos(alpha+beta)=(3)/(2)`, then the value of `sqrt3 sin alpha+cos alpha` is equal to

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we start with the given equation: \[ \cos \alpha + \cos \beta - \cos(\alpha + \beta) = \frac{3}{2} \] ### Step 1: Rearranging the Equation We can rearrange the equation as follows: \[ \cos \alpha + \cos \beta = \frac{3}{2} + \cos(\alpha + \beta) \] ### Step 2: Using the Cosine Addition Formula Using the cosine addition formula, we know that: \[ \cos(\alpha + \beta) = \cos \alpha \cos \beta - \sin \alpha \sin \beta \] Substituting this into our rearranged equation gives: \[ \cos \alpha + \cos \beta = \frac{3}{2} + \cos \alpha \cos \beta - \sin \alpha \sin \beta \] ### Step 3: Multiplying by 2 To eliminate the fraction, we can multiply the entire equation by 2: \[ 2(\cos \alpha + \cos \beta) = 3 + 2(\cos \alpha \cos \beta - \sin \alpha \sin \beta) \] ### Step 4: Rearranging Again Rearranging gives us: \[ 2\cos \alpha + 2\cos \beta - 2\cos \alpha \cos \beta + 2\sin \alpha \sin \beta = 3 \] ### Step 5: Using Trigonometric Identities We can use the identity \( \sin^2 \theta + \cos^2 \theta = 1 \) to express the equation in terms of squares. ### Step 6: Setting Up a Quadratic Equation We can express \( \cos \alpha + \cos \beta \) in terms of \( x = \cos \alpha \) and \( y = \cos \beta \): \[ x + y - xy = \frac{3}{2} \] ### Step 7: Solving for \( \alpha \) and \( \beta \) From the equation \( \sin \alpha = \sin \beta \), we conclude that \( \alpha = \beta \). ### Step 8: Finding the Value of \( \alpha \) Substituting \( \alpha = \beta \) into the equation gives: \[ 2\cos \alpha - \cos(2\alpha) = \frac{3}{2} \] Using \( \cos(2\alpha) = 2\cos^2 \alpha - 1 \): \[ 2\cos \alpha - (2\cos^2 \alpha - 1) = \frac{3}{2} \] This simplifies to: \[ 2\cos \alpha - 2\cos^2 \alpha + 1 = \frac{3}{2} \] ### Step 9: Solving the Quadratic Rearranging gives: \[ 2\cos^2 \alpha - 2\cos \alpha + \frac{1}{2} = 0 \] Multiplying through by 2: \[ 4\cos^2 \alpha - 4\cos \alpha + 1 = 0 \] ### Step 10: Using the Quadratic Formula Using the quadratic formula \( \cos \alpha = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \): \[ \cos \alpha = \frac{4 \pm \sqrt{16 - 16}}{8} = \frac{4}{8} = \frac{1}{2} \] ### Step 11: Finding \( \alpha \) Since \( \cos \alpha = \frac{1}{2} \), we find: \[ \alpha = \frac{\pi}{3} \] ### Step 12: Finding \( \sqrt{3} \sin \alpha + \cos \alpha \) Now we calculate: \[ \sin \alpha = \sin\left(\frac{\pi}{3}\right) = \frac{\sqrt{3}}{2}, \quad \cos \alpha = \cos\left(\frac{\pi}{3}\right) = \frac{1}{2} \] Thus, \[ \sqrt{3} \sin \alpha + \cos \alpha = \sqrt{3} \cdot \frac{\sqrt{3}}{2} + \frac{1}{2} = \frac{3}{2} + \frac{1}{2} = \frac{4}{2} = 2 \] ### Final Answer The value of \( \sqrt{3} \sin \alpha + \cos \alpha \) is: \[ \boxed{2} \]
Promotional Banner

Similar Questions

Explore conceptually related problems

If 0 lt alpha, beta lt pi and they satisfy cos alpha + cosbeta - cos(alpha + beta)=3/2

If sin alpha sin beta - cos alpha cos beta + 1=0, then the value of 1+cot alpha tan beta is

sin alpha+sinbeta=(1)/(4) and cos alpha+cos beta=(1)/(3) the value of sin(alpha+beta)

If sin alpha.sinbeta - cos alpha.cos beta+1=0 , then find the value of cot alpha.tan beta .

If sin alpha+sin beta=a and cos alpha-cos beta=b then tan((alpha-beta)/2) is equal to-

cos 2 alpha =(3 cos 2 beta -1)/( 3-cos 2 beta), then tan alpha=

If sin alpha cos beta=-(1)/(2) then find the range of values of cos alpha sin beta

sin alpha+ sinbeta=(1)/(4) and cos alpha+cos beta=(1)/(3) The value of tan (alpha+beta) is

If alpha+beta= 60^0 , prove that cos^2 alpha + cos^2 beta - cosalpha cos beta = 3/4 .

If sin alpha + sin beta=a and cos alpha+cosbeta=b then tan((alpha-beta)/2) is equal to