Home
Class 12
CHEMISTRY
For a first order reaction A rarr P, the...

For a first order reaction `A rarr P`, the temperature `(T)` dependent rate constant `(k)` was found to follow the equation `log k = -2000(1//T) + 6.0`. The pre-exponential factor `A` and the activation energy `E_(a)`, respective, are

A

`1.0xx10^(6)s^(-1) and "9.2 kJ mol"^(-1)`

B

`6.0s^(-1) and "16.6 kJ mol"^(-1)`

C

`1.0xx10^(6)s^(-1) and "16.6 kJ mol"^(-1)`

D

`1.0xx10^(6)s^(-1)and"38.3 kJ mol"^(-1)`

Text Solution

Verified by Experts

The correct Answer is:
D
Promotional Banner

Similar Questions

Explore conceptually related problems

In a first-order reaction A rarr B , if K is the rate constant and initial concentration of the reactant is 0.5 M , then half-life is

If the rate constant for a first order reaction is k, the time (t) required for the completion of 99% of the reaction is given by :

Assertion : For a first order reaction, t_(1//2) is indepent of rate constant. Reason : For a first reaction t_(1//2) prop [R]_(0) .

The rate of reaction increases isgnificantly with increase in temperature. Generally, rate of reactions are doubled for every 10^(@)C rise in temperature. Temperature coefficient gives us an idea about the change in the rate of a reaction for every 10^(@)C change in temperature. "Temperature coefficient" (mu) = ("Rate constant of" (T + 10)^(@)C)/("Rate constant at" T^(@)C) Arrhenius gave an equation which describes aret constant k as a function of temperature k = Ae^(-E_(a)//RT) where k is the rate constant, A is the frequency factor or pre-exponential factor, E_(a) is the activation energy, T is the temperature in kelvin, R is the universal gas constant. Equation when expressed in logarithmic form becomes log k = log A - (E_(a))/(2.303 RT) Activation energies of two reaction are E_(a) and E_(a)' with E_(a) gt E'_(a) . If the temperature of the reacting systems is increased form T_(1) to T_(2) ( k' is rate constant at higher temperature).

The rate of reaction increases isgnificantly with increase in temperature. Generally, rate of reactions are doubled for every 10^(@)C rise in temperature. Temperature coefficient gives us an idea about the change in the rate of a reaction for every 10^(@)C change in temperature. "Temperature coefficient" (mu) = ("Rate constant of" (T + 10)^(@)C)/("Rate constant at" T^(@)C) Arrhenius gave an equation which describes aret constant k as a function of temperature k = Ae^(-E_(a)//RT) where k is the rate constant, A is the frequency factor or pre-exponential factor, E_(a) is the activation energy, T is the temperature in kelvin, R is the universal gas constant. Equation when expressed in logarithmic form becomes log k = log A - (E_(a))/(2.303 RT) For a reaction E_(a) = 0 and k = 3.2 xx 10^(8)s^(-1) at 325 K . The value of k at 335 K would be

The rate of reaction increases isgnificantly with increase in temperature. Generally, rate of reactions are doubled for every 10^(@)C rise in temperature. Temperature coefficient gives us an idea about the change in the rate of a reaction for every 10^(@)C change in temperature. "Temperature coefficient" (mu) = ("Rate constant of" (T + 10)^(@)C)/("Rate constant at" T^(@)C) Arrhenius gave an equation which describes aret constant k as a function of temperature k = Ae^(-E_(a)//RT) where k is the rate constant, A is the frequency factor or pre-exponential factor, E_(a) is the activation energy, T is the temperature in kelvin, R is the universal gas constant. Equation when expressed in logarithmic form becomes log k = log A - (E_(a))/(2.303 RT) For which of the following reactions k_(310)//k_(300) would be maximum?

The rate of reaction increases isgnificantly with increase in temperature. Generally, rate of reactions are doubled for every 10^(@)C rise in temperature. Temperature coefficient gives us an idea about the change in the rate of a reaction for every 10^(@)C change in temperature. "Temperature coefficient" (mu) = ("Rate constant of" (T + 10)^(@)C)/("Rate constant at" T^(@)C) Arrhenius gave an equation which describes aret constant k as a function of temperature k = Ae^(-E_(a)//RT) where k is the rate constant, A is the frequency factor or pre-exponential factor, E_(a) is the activation energy, T is the temperature in kelvin, R is the universal gas constant. Equation when expressed in logarithmic form becomes log k = log A - (E_(a))/(2.303 RT) For the given reactions, following data is given {:(PrarrQ,,,,k_(1) =10^(15)exp((-2000)/(T))),(CrarrD,,,,k_(2) = 10^(14)exp((-1000)/(T))):} Temperature at which k_(1) = k_(2) is

If reaction A and B are given with same temperature and same concentration but rate of A is double than B . Pre exponential factor is same for both the reaction then difference in activation energy E_(A) - E_(B) is ?

The rate constant for the decompoistion of a certain reaction is described by the equation: log k(s^(-1)) = 14 - (1.25 xx 10^(4) K)/(T) Pre-exponential factor for this reaction is

For a reaction, the rate constant is expressed as k = Ae^(-40000//T) . The energy of the activation is