Home
Class 12
MATHS
Let P=[(2alpha),(5),(-3alpha^(2))] and Q...

Let `P=[(2alpha),(5),(-3alpha^(2))] and Q=[(2l,-m,5n)]` are two matrices, where `l, m, n, alpha in R`, then the value of determinant PQ is equal to

A

0

B

`-1`

C

2

D

not possible

Text Solution

AI Generated Solution

The correct Answer is:
To find the value of the determinant of the product of the matrices \( P \) and \( Q \), we can follow these steps: ### Step 1: Define the matrices Let: \[ P = \begin{bmatrix} 2\alpha \\ 5 \\ -3\alpha^2 \end{bmatrix}, \quad Q = \begin{bmatrix} 2l & -m & 5n \end{bmatrix} \] ### Step 2: Calculate the product \( PQ \) The product \( PQ \) is calculated as follows: \[ PQ = P \cdot Q = \begin{bmatrix} 2\alpha \\ 5 \\ -3\alpha^2 \end{bmatrix} \cdot \begin{bmatrix} 2l & -m & 5n \end{bmatrix} \] This results in a \( 3 \times 3 \) matrix: \[ PQ = \begin{bmatrix} 2\alpha \cdot 2l & 2\alpha \cdot (-m) & 2\alpha \cdot 5n \\ 5 \cdot 2l & 5 \cdot (-m) & 5 \cdot 5n \\ -3\alpha^2 \cdot 2l & -3\alpha^2 \cdot (-m) & -3\alpha^2 \cdot 5n \end{bmatrix} \] Calculating each element: \[ PQ = \begin{bmatrix} 4\alpha l & -2\alpha m & 10\alpha n \\ 10l & -5m & 25n \\ -6\alpha^2 l & 3\alpha^2 m & -15\alpha^2 n \end{bmatrix} \] ### Step 3: Analyze the matrix for determinant calculation Now we have: \[ PQ = \begin{bmatrix} 4\alpha l & -2\alpha m & 10\alpha n \\ 10l & -5m & 25n \\ -6\alpha^2 l & 3\alpha^2 m & -15\alpha^2 n \end{bmatrix} \] ### Step 4: Check for identical columns Notice that the first and third columns can be expressed as: - First column: \( 4\alpha l \), \( 10l \), \( -6\alpha^2 l \) - Third column: \( 10\alpha n \), \( 25n \), \( -15\alpha^2 n \) If we factor out common terms, we can see that: - The first column can be factored to \( l \) and the third column can be factored to \( n \). However, if we look closely, we can see that the first and third columns are not identical but they can be linearly dependent under certain conditions. ### Step 5: Conclusion about the determinant Since the determinant of a matrix is zero if any two columns are identical or if any column can be expressed as a linear combination of the others, we can conclude that: - The first and third columns are not identical but they can be dependent on the values of \( \alpha, l, m, n \). Thus, we can conclude: \[ \text{det}(PQ) = 0 \] ### Final Answer The value of the determinant \( \text{det}(PQ) \) is: \[ \boxed{0} \]
Promotional Banner

Similar Questions

Explore conceptually related problems

If |(alpha^(2n),alpha^(2n+2),alpha^(2n+4)),(beta^(2n),beta^(2n+2),beta^(2n+4)),(gamma^(2n),gamma^(2n+2),gamma^(2n+4))|=((1)/(beta^(2))-(1)/(alpha^(2)))((1)/(gamma^(2))-(1)/(beta^(2)))((1)/(alpha^(2))-(1)/(gamma^(2))) {where alpha^(2), beta^(2) and gamma^(2) are al distinct}, then the value of n is equal to

If A and B are non - singular matrices of order three such that adj(AB)=[(1,1,1),(1,alpha, 1),(1,1,alpha)] and |B^(2)adjA|=alpha^(2)+3alpha-8 , then the value of alpha is equal to

Let p=[(3,-1,-2),(2,0,alpha),(3,-5,0)], where alpha in RR. Suppose Q=[q_(ij)] is a matrix such that PQ=kI, where k in RR, k != 0 and I is the identity matrix of order 3. If q_23=-k/8 and det(Q)=k^2/2, then

Consider I(alpha)=int_(alpha)^(alpha^(2))(dx)/(x) (where alpha gt 0 ), then the value of Sigma_(r=2)^(5)I(r )+Sigma_(k=2)^(5)I((1)/(k)) is

If 8l^2+35 m^2+36 l m+6l+12 m+1=0 and the line l x+m y+1=0 touches a fixed circle whose centre is (alpha,beta) and radius is ' r^(prime), then the value of (alpha+beta-r) is equal to

If 4nalpha =pi then cot alpha cot 2 alpha cot 3alpha ...cot (2n-1)alpha n in Z is equal to

If x=2alpha+1\ a n d\ y=alpha-1 is a solution of the equation 2x-3y+5=0 , find the value of alpha

If alpha is complex fifth root of unity and (1+alpha +alpha^(2)+ alpha^(3))^(2005) = p + qalpha + ralpha^(2) + salpha^(3) (where p,q,r,s are real), then find the value of p+ q+r+s .

If l, m, n denote the side of a pedal triangle, then (l)/(a ^(2))+(m)/(b^(2))+(n)/(c ^(2)) is equal to

Let det A=|{:(l,m,n),(p,q,r),(1,1,1):}| and if (l-m)^2 + (p-q)^2 =9, (m-n)^2 + (q-r)^2=16, (n-l)^2 +(r-p)^2=25 , then the value ("det." A)^2 equals :