Home
Class 12
MATHS
For a complex number Z,|Z|=1 and "arg "(...

For a complex number `Z,|Z|=1 and "arg "(Z)=theta`. If `(Z)(Z^(2))(Z^(3))…(Z^(n))=1`, then the value of `theta` is

A

`(4mpi)/(n(n+1)), m in I`

B

`(2mpi)/(n(n+1)), m in I`

C

`(mpi)/(n(n+1)), m in I`

D

None of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we start with the given conditions for the complex number \( Z \): 1. **Given Conditions**: - \( |Z| = 1 \) - \( \text{arg}(Z) = \theta \) - The product \( Z \cdot Z^2 \cdot Z^3 \cdots Z^n = 1 \) 2. **Expressing \( Z \)**: Since \( |Z| = 1 \), we can express \( Z \) in exponential form: \[ Z = e^{i\theta} \] 3. **Calculating the Product**: We need to calculate the product: \[ Z \cdot Z^2 \cdot Z^3 \cdots Z^n = e^{i\theta} \cdot e^{2i\theta} \cdot e^{3i\theta} \cdots e^{ni\theta} \] This can be rewritten as: \[ e^{i\theta(1 + 2 + 3 + \ldots + n)} \] 4. **Sum of the First \( n \) Natural Numbers**: The sum of the first \( n \) natural numbers is given by the formula: \[ 1 + 2 + 3 + \ldots + n = \frac{n(n + 1)}{2} \] Therefore, we can substitute this into our product: \[ Z \cdot Z^2 \cdot Z^3 \cdots Z^n = e^{i\theta \cdot \frac{n(n + 1)}{2}} \] 5. **Setting the Product Equal to 1**: We know that this product equals 1: \[ e^{i\theta \cdot \frac{n(n + 1)}{2}} = 1 \] The exponential function equals 1 when its exponent is an integer multiple of \( 2\pi \): \[ i\theta \cdot \frac{n(n + 1)}{2} = i \cdot 2m\pi \quad \text{for some integer } m \] 6. **Canceling \( i \)**: We can cancel \( i \) from both sides: \[ \theta \cdot \frac{n(n + 1)}{2} = 2m\pi \] 7. **Solving for \( \theta \)**: Rearranging gives us: \[ \theta = \frac{4m\pi}{n(n + 1)} \] 8. **Conclusion**: The value of \( \theta \) is: \[ \theta = \frac{4m\pi}{n(n + 1)} \] where \( m \) is any integer.
Promotional Banner

Similar Questions

Explore conceptually related problems

For a complex number Z, if arg Z=(pi)/(4) and |Z+(1)/(Z)|=4 , then the value of ||Z|-(1)/(|Z|)| is equal to

For complex number z,|z-1|+|z+1|=2, then z lies on

If arg (z^(1//2))=(1)/(2)arg(z^(2)+barzz^(1//3)), find the value of |z|.

Statement-1: for any non-zero complex number z, |z/|z|-1| le "arg"(z) Stetement-2 :sintheta le theta for theta ge 0

Consider the complex number z = (1 - isin theta)//(1+ icos theta) . The value of theta for which z is purely real are

If a complex number z satisfies |z| = 1 and arg(z-1) = (2pi)/(3) , then ( omega is complex imaginary number)

Consider the complex number z = (1 - isin theta)//(1+ icos theta) . The value of theta for which z is purely imaginary are

Consider the complex number z = (1 - isin theta)//(1+ icos theta) . The value of theta for which z is unimodular give by

If z is a complex number satisfying |z|^(2)-|z|-2 lt 0 , then the value of |z^(2)+zsintheta| , for all values of theta , is

For any two complex numbers z_(1),z_(2) the values of |z_(1)+z_(2)|^(2)+|z_(1)-z_(2)|^(2) , is