Home
Class 12
MATHS
The value of lim(xrarr0)(ln(10-9cos2x))/...

The value of `lim_(xrarr0)(ln(10-9cos2x))/(ln^(2)(sin3x+1))` is equal to

Text Solution

Verified by Experts

The correct Answer is:
2
Promotional Banner

Similar Questions

Explore conceptually related problems

The value of lim_(xrarr0)(ln(2-cos15x))/(ln^(2)(sin3x+1)) is equal to

The value of lim_(xrarr0)(9ln (2-cos 25x))/(5ln^(2)(sin 3x+1)) is equal to

lim_(xrarr0)((1-cos x)/x^2)

The value of lim_(xrarr0)(e^(x)-cos2x-x)/(x^2) , is

The value of lim_(xrarr0)(1-cos^(3)x)/(xsinxcosx)

The value fo lim_(xrarr0)(1-cos^(4)x)/((sin^(2)xcos x)) is equal to

The value of lim_(xrarr0)(1-cos^(3)x)/(sin^(2)xcos x) is equal to

The value of lim_(xrarr0)(((1-cos4x)(5+cosx))/(xtan5x)) is equal to

The value of lim_(xrarr2pi)(1-(secx)^(secx))/(ln(secx)) is equal to

The value of lim_(xrarr0)(secx-(secx)^(secx))/(1-secx+ln(secx)) is equal to