Home
Class 12
CHEMISTRY
Consider the atomization of Br(2)(g) acc...

Consider the atomization of `Br_(2)(g)` according to the reaction :
`Br_(2)(g)hArr 2Br(g)" "{"Given antiloge "(-7.02)=9xx10-4}`
If the heat of atomization of bromine gas is 82 Kj/mol, standard molar entropies of `Br(g) and Br_(2)(g)` are 175 and `"245.4 JK"^(-1)` respectively, calculate degree of dissociation when the total pressure is 40 atm at 500 K.
(assume `alpha ltlt1` in your calculation)

A

`2.37xx10^(-3)`

B

`3.20xx10^(-4)`

C

`4.30xx10^(-5)`

D

`3.60xx10^(-2)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we will follow these steps: ### Step 1: Write the Reaction and Given Data The reaction for the atomization of bromine gas is: \[ \text{Br}_2(g) \rightleftharpoons 2 \text{Br}(g) \] Given data: - Heat of atomization, \( \Delta H^\circ = 82 \, \text{kJ/mol} = 82000 \, \text{J/mol} \) - Standard molar entropy of \( \text{Br}(g) = 175 \, \text{J/K} \) - Standard molar entropy of \( \text{Br}_2(g) = 245.4 \, \text{J/K} \) - Total pressure \( P = 40 \, \text{atm} \) - Temperature \( T = 500 \, \text{K} \) ### Step 2: Calculate the Change in Entropy (\( \Delta S^\circ \)) Using the formula for change in entropy: \[ \Delta S^\circ = 2 S^\circ_{\text{Br}} - S^\circ_{\text{Br}_2} \] Substituting the values: \[ \Delta S^\circ = 2 \times 175 - 245.4 = 350 - 245.4 = 104.6 \, \text{J/K} \] ### Step 3: Calculate the Change in Gibbs Free Energy (\( \Delta G^\circ \)) Using the Gibbs free energy equation: \[ \Delta G^\circ = \Delta H^\circ - T \Delta S^\circ \] Substituting the values: \[ \Delta G^\circ = 82000 - 500 \times 104.6 = 82000 - 52300 = 29700 \, \text{J} \] ### Step 4: Relate \( \Delta G^\circ \) to \( K_p \) Using the relation: \[ \Delta G^\circ = -R T \ln K_p \] Where \( R = 8.314 \, \text{J/(K·mol)} \). Thus, \[ 29700 = -8.314 \times 500 \ln K_p \] Calculating: \[ \ln K_p = -\frac{29700}{8.314 \times 500} \approx -7.13 \] Taking the antilog: \[ K_p = e^{-7.13} \approx 9.0 \times 10^{-4} \] ### Step 5: Express \( K_p \) in Terms of \( \alpha \) For the dissociation of \( \text{Br}_2 \): - Initial moles of \( \text{Br}_2 = a \) - At equilibrium: - Moles of \( \text{Br}_2 = a(1 - \alpha) \) - Moles of \( \text{Br} = 2a\alpha \) Total moles at equilibrium: \[ n_{\text{total}} = a(1 - \alpha) + 2a\alpha = a(1 + \alpha) \] Using the ideal gas law, the partial pressures can be expressed as: \[ K_p = \frac{(2a\alpha)^2}{a(1 - \alpha)} \cdot \frac{P^2}{P} = \frac{4a^2\alpha^2}{a(1 - \alpha)} \cdot \frac{1}{40} \] Thus, \[ K_p = \frac{4\alpha^2}{40(1 - \alpha)} = \frac{\alpha^2}{10(1 - \alpha)} \] ### Step 6: Substitute \( K_p \) and Solve for \( \alpha \) Substituting \( K_p \): \[ 9.0 \times 10^{-4} = \frac{\alpha^2}{10(1 - \alpha)} \] Assuming \( \alpha \ll 1 \), \( 1 - \alpha \approx 1 \): \[ 9.0 \times 10^{-4} \approx \frac{\alpha^2}{10} \] Thus, \[ \alpha^2 \approx 9.0 \times 10^{-3} \] Taking the square root: \[ \alpha \approx 0.0949 \approx 9.49 \times 10^{-2} \] ### Final Answer The degree of dissociation \( \alpha \) is approximately \( 0.0949 \) or \( 9.49 \times 10^{-2} \).
Promotional Banner

Similar Questions

Explore conceptually related problems

For the reaction (1)and(2) A(g)hArrB(g)+C(g) X(g) hArr2Y(g) Given , K_(p1):K_(p2)=9:1 If the degree of dissociation of A(g) and X(g) be same then the total pressure at equilibrium (1) and (2) are in the ratio:

For the dissociation reaction N_(2)O_(4) (g)hArr 2NO_(2)(g) , the degree of dissociation (alpha) interms of K_(p) and total equilibrium pressure P is:

If the end energies of H-H, Br-Br and H-Br are 433, 192 and 364 kJ mol^(-1) respectively, then DeltaH^(@) for the reaction, H_(2)(g)+Br_(2)(g)to2HB r(g) is

The equilibrium constants for the reaction Br_(2)hArr 2Br at 500 K and 700 K are 1xx10^(-10) and 1xx10^(-5) respectively. The reaction is:

The equilibrium constants for the reaction Br_(2)hArr 2Br at 500 K and 700 K are 1xx10^(-10) and 1xx10^(-5) respectively. The reaction is:

For the reaction, N_(2)O_(4)(g)hArr 2NO_(2)(g) the degree of dissociation at equilibrium is 0.l4 at a pressure of 1 atm. The value of K_(p) is

The bond energies of H--H , Br--Br and H--Br are 433,, 192 and 364KJmol^(-1) respectively. The DeltaH^(@) for the reaction H_(2)(g)+Br_(2)(g)rarr2HBr(g) is

Calculate the entropy change at 298K for the reaction Br_(2)(l) +CI_(2)(g) rarr 2BrCI(g) DeltaH = 29.3 kJ at 298K . The entropies of Br_(2)(l), CI_(2)(g) , and BrCI(g) at the above temperature and 152.3, 223.0 and 239.7 J mol^(-1)K^(-1) respectively.

Calculate the free energy change at 298 K for the reaction, Br_(2)(l)+ Cl_(2)(g) rarr 2BrCl(g) . For the reaction DeltaH^(@)=29.3 KJ & the entropies of Br_(2)(l),Cl_(2)(g) & BrCl(g) at the 298 K are 152.3,223.0,239.7 J "mol^(-1)K^(-1) respectively.

Given, H_(2)(g)+Br_(2)(g)rarr2HBr(g),DeltaH_(1)^(0) and standard enthalpy of condensaion of bromine is DeltaH_(2)^(0) , standard enthalpy of formation of HBr at 25^(@)C is