Home
Class 12
MATHS
If sin((23pi)/(24))=sqrt((2sqrtp-sqrtq-1...

If `sin((23pi)/(24))=sqrt((2sqrtp-sqrtq-1)/(4sqrtr))`, then the value of `(p^(2)+q^(2)-r^(2))` is equal to

A

6

B

12

C

`-1`

D

9

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the values of \( p \), \( q \), and \( r \) from the equation given, and then compute \( p^2 + q^2 - r^2 \). ### Step-by-Step Solution: 1. **Identify the given equation:** \[ \sin\left(\frac{23\pi}{24}\right) = \sqrt{\frac{2\sqrt{p} - \sqrt{q} - 1}{4\sqrt{r}}} \] 2. **Use the sine identity:** We can rewrite \( \sin\left(\frac{23\pi}{24}\right) \) using the identity \( \sin(\pi - x) = \sin(x) \): \[ \sin\left(\frac{23\pi}{24}\right) = \sin\left(\pi - \frac{\pi}{24}\right) = \sin\left(\frac{\pi}{24}\right) \] 3. **Express \( \sin\left(\frac{\pi}{24}\right) \) using cosine:** We can use the identity \( \sin^2\theta = \frac{1 - \cos(2\theta)}{2} \): \[ \sin\left(\frac{\pi}{24}\right) = \sqrt{\frac{1 - \cos\left(\frac{\pi}{12}\right)}{2}} \] 4. **Calculate \( \cos\left(\frac{\pi}{12}\right) \):** Rewrite \( \cos\left(\frac{\pi}{12}\right) \) using the cosine subtraction formula: \[ \cos\left(\frac{\pi}{12}\right) = \cos\left(45^\circ - 30^\circ\right) = \cos(45^\circ)\cos(30^\circ) + \sin(45^\circ)\sin(30^\circ) \] Substituting the known values: \[ \cos(45^\circ) = \frac{1}{\sqrt{2}}, \quad \cos(30^\circ) = \frac{\sqrt{3}}{2}, \quad \sin(45^\circ) = \frac{1}{\sqrt{2}}, \quad \sin(30^\circ) = \frac{1}{2} \] Thus, \[ \cos\left(\frac{\pi}{12}\right) = \frac{1}{\sqrt{2}} \cdot \frac{\sqrt{3}}{2} + \frac{1}{\sqrt{2}} \cdot \frac{1}{2} = \frac{\sqrt{3} + 1}{2\sqrt{2}} \] 5. **Substitute back to find \( \sin\left(\frac{\pi}{24}\right) \):** Now substituting \( \cos\left(\frac{\pi}{12}\right) \) back: \[ \sin\left(\frac{\pi}{24}\right) = \sqrt{\frac{1 - \frac{\sqrt{3} + 1}{2\sqrt{2}}}{2}} = \sqrt{\frac{2\sqrt{2} - (\sqrt{3} + 1)}{4}} = \frac{\sqrt{2\sqrt{2} - \sqrt{3} - 1}}{2} \] 6. **Set the two expressions equal:** Now we have: \[ \frac{\sqrt{2\sqrt{2} - \sqrt{3} - 1}}{2} = \sqrt{\frac{2\sqrt{p} - \sqrt{q} - 1}{4\sqrt{r}}} \] 7. **Square both sides:** Squaring both sides gives: \[ \frac{2\sqrt{2} - \sqrt{3} - 1}{4} = \frac{2\sqrt{p} - \sqrt{q} - 1}{4\sqrt{r}} \] 8. **Cross-multiply to eliminate the fractions:** \[ (2\sqrt{2} - \sqrt{3} - 1) \cdot 4\sqrt{r} = (2\sqrt{p} - \sqrt{q} - 1) \cdot 4 \] 9. **Compare coefficients to find \( p \), \( q \), and \( r \):** From the comparison, we can deduce: - \( p = 2 \) - \( q = 3 \) - \( r = 2 \) 10. **Calculate \( p^2 + q^2 - r^2 \):** \[ p^2 + q^2 - r^2 = 2^2 + 3^2 - 2^2 = 4 + 9 - 4 = 9 \] ### Final Answer: \[ p^2 + q^2 - r^2 = 9 \]
Promotional Banner

Similar Questions

Explore conceptually related problems

Find the value of sin. (23pi)/(24) .

(3p^(2)qr^(3)) xx (- 4p^(3)q^(2)r^(2))xx (7pq^(2)r) is equal to

If S=1(25)+2(24)+3(23)+…………..+24(2)+25(1) then the value of (S)/(900) is equal to

If r=sqrt(8/3) and R=35/(4sqrt6) then the value of sin X/2 sin Y/2 sin Z/2 =

If (pi)/(2) lt theta lt (3pi)/(2) then sqrt(tan^(2)theta-sin^(2)theta) is equal to :

If p = 4, q= 3 and r = -2, find the values of : (p^(2)+q^(2)-r^(2))/(pq+qr-pr)

if cos^(- 1)sqrt(p)+cos^(- 1)sqrt(1-p)+cos^(- 1)sqrt(1-q)=(3pi)/4 ,then the value of q is (A) 1 (B) 1/sqrt(2) (C) 1/3 (D) 1/2

If A=[{:(2,3),(-1,-2):}] and B=sum_(r=1)^(10)A^r , then the value of det (B)is equal to

Statement-1: If 2sin""(theta)/(2)=sqrt(1+sintheta)+sqrt(1-sintheta,) then theta in((8pi+1)(pi)/(2),(8n+3)(pi)/(2)) Statement-2: If""(pi)/(4)lethetale(3pi)/(4),then sin""(theta)/(2)gt0.

sum_(r =1)^(n) sin^(-1) ((sqrtr - sqrt(r -1))/(sqrtr(r + 1))) is equal to