Home
Class 12
MATHS
If int(0)^(1)e^(x^(2))(x-a)dx=0, then th...

If `int_(0)^(1)e^(x^(2))(x-a)dx=0`, then the value of `int_(0)^(1)e^(X^(2))dx` is euqal to

A

`(1)/(2a)(e-1)`

B

`(a)/(2)(e-1)`

C

`(1)/(2a)(e+1)`

D

`(a)/(2)(e+1)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to evaluate the integral given the equation: \[ \int_{0}^{1} e^{x^2} (x - a) \, dx = 0 \] ### Step 1: Rewrite the Integral We can break down the integral into two parts: \[ \int_{0}^{1} e^{x^2} x \, dx - a \int_{0}^{1} e^{x^2} \, dx = 0 \] ### Step 2: Define the Integrals Let: \[ I = \int_{0}^{1} e^{x^2} \, dx \] Then the equation becomes: \[ \int_{0}^{1} e^{x^2} x \, dx = a I \] ### Step 3: Change of Variables To evaluate \(\int_{0}^{1} e^{x^2} x \, dx\), we can use a substitution. Let \(t = x^2\), then \(dt = 2x \, dx\) or \(dx = \frac{dt}{2\sqrt{t}}\). When \(x = 0\), \(t = 0\) and when \(x = 1\), \(t = 1\). Thus, we can rewrite the integral as: \[ \int_{0}^{1} e^{x^2} x \, dx = \int_{0}^{1} e^t \frac{dt}{2} \] ### Step 4: Evaluate the Integral Now, we evaluate the integral: \[ \int_{0}^{1} e^t \, dt = e^t \Big|_{0}^{1} = e - 1 \] Thus, \[ \int_{0}^{1} e^{x^2} x \, dx = \frac{1}{2} (e - 1) \] ### Step 5: Substitute Back Substituting back into our equation gives: \[ \frac{1}{2} (e - 1) = a I \] ### Step 6: Solve for \(I\) Now we can express \(I\) in terms of \(a\): \[ I = \frac{1}{2a} (e - 1) \] ### Conclusion Thus, the value of the integral \(\int_{0}^{1} e^{x^2} \, dx\) is: \[ \int_{0}^{1} e^{x^2} \, dx = \frac{1}{2a} (e - 1) \]
Promotional Banner

Similar Questions

Explore conceptually related problems

int_(0)^(1)x e^(x^(2)) dx

The value of int _(0)^(infty)e-^(a^(2)x^(2)) dx is equal to

The value of int_(0)^(1) (1)/(2x-3)dx is

If int _0^1e^(x^2)(x-alpha)dx=0 , then

int_(0)^(4)(x+e^(2x))dx

int_(0)^(2)e^(x)\ dx

int_(0)^(2) e^(x) dx

int_(-1)^(1)e^(2x)dx

int_(0)^(1)e^(2x)e^(e^(x) dx =)

The value of int_(0)^(100) e^(x-[x])dx , is