Home
Class 12
MATHS
If veca, vecb and vecc are three non - z...

If `veca, vecb and vecc` are three non - zero and non - coplanar vectors such that `[(veca,vecb,vecc)]=4`, then the value of `(veca+3vecb-vecc).((veca-vecb)xx(veca-2vecb-3vecc))` equal to

A

40

B

44

C

48

D

52

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to evaluate the expression \((\vec{a} + 3\vec{b} - \vec{c}) \cdot ((\vec{a} - \vec{b}) \times (\vec{a} - 2\vec{b} - 3\vec{c}))\) given that \([\vec{a}, \vec{b}, \vec{c}] = 4\). ### Step 1: Identify the vectors We have three non-zero and non-coplanar vectors \(\vec{a}\), \(\vec{b}\), and \(\vec{c}\). The scalar triple product \([\vec{a}, \vec{b}, \vec{c}] = 4\) indicates the volume of the parallelepiped formed by these vectors. ### Step 2: Rewrite the expression We need to evaluate: \[ (\vec{a} + 3\vec{b} - \vec{c}) \cdot ((\vec{a} - \vec{b}) \times (\vec{a} - 2\vec{b} - 3\vec{c})) \] ### Step 3: Calculate the cross product To find \((\vec{a} - \vec{b}) \times (\vec{a} - 2\vec{b} - 3\vec{c})\), we can use the distributive property of the cross product: \[ \vec{u} \times (\vec{v} + \vec{w}) = \vec{u} \times \vec{v} + \vec{u} \times \vec{w} \] Let \(\vec{u} = \vec{a} - \vec{b}\), \(\vec{v} = \vec{a} - 2\vec{b}\), and \(\vec{w} = -3\vec{c}\). Thus, \[ (\vec{a} - \vec{b}) \times (\vec{a} - 2\vec{b} - 3\vec{c}) = (\vec{a} - \vec{b}) \times (\vec{a} - 2\vec{b}) + (\vec{a} - \vec{b}) \times (-3\vec{c}) \] ### Step 4: Simplify the expression We can simplify the expression further by calculating each component: 1. \((\vec{a} - \vec{b}) \times (\vec{a} - 2\vec{b})\) 2. \((\vec{a} - \vec{b}) \times (-3\vec{c}) = -3(\vec{a} - \vec{b}) \times \vec{c}\) ### Step 5: Use the scalar triple product The scalar triple product can be used to simplify the calculations. We know that: \[ \vec{u} \cdot (\vec{v} \times \vec{w}) = [\vec{u}, \vec{v}, \vec{w}] \] Thus, we can express our dot product as: \[ (\vec{a} + 3\vec{b} - \vec{c}) \cdot ((\vec{a} - \vec{b}) \times (\vec{a} - 2\vec{b} - 3\vec{c})) = [\vec{a} + 3\vec{b} - \vec{c}, \vec{a} - \vec{b}, \vec{a} - 2\vec{b} - 3\vec{c}] \] ### Step 6: Calculate the determinant The determinant can be calculated using the coefficients of the vectors: \[ \begin{vmatrix} 1 & 3 & -1 \\ 1 & -1 & 0 \\ 1 & -2 & -3 \end{vmatrix} \] ### Step 7: Expand the determinant Expanding the determinant: 1. The first row gives: \[ 1 \cdot \begin{vmatrix} -1 & 0 \\ -2 & -3 \end{vmatrix} - 3 \cdot \begin{vmatrix} 1 & 0 \\ 1 & -3 \end{vmatrix} - (-1) \cdot \begin{vmatrix} 1 & -1 \\ 1 & -2 \end{vmatrix} \] Calculating these determinants: - \(\begin{vmatrix} -1 & 0 \\ -2 & -3 \end{vmatrix} = 3\) - \(\begin{vmatrix} 1 & 0 \\ 1 & -3 \end{vmatrix} = -3\) - \(\begin{vmatrix} 1 & -1 \\ 1 & -2 \end{vmatrix} = -1\) Putting it all together: \[ 1 \cdot 3 - 3 \cdot (-3) + 1 \cdot (-1) = 3 + 9 - 1 = 11 \] ### Step 8: Multiply by the scalar triple product Finally, we multiply by the scalar triple product: \[ 11 \times 4 = 44 \] Thus, the value of the expression is: \[ \boxed{44} \]
Promotional Banner

Similar Questions

Explore conceptually related problems

If veca,vecbandvecc are unit vectors such that veca+vecb+vecc=0 , then the value of veca.vecb+vecb.vecc+vecc.veca is

If veca,vecbandvecc are unit vectors such that veca+vecb+vecc=0 , then the value of veca.vecb+vecb.vecc+vecc.veca is

If veca, vecb,vecc are three non-coplanar vectors such that veca xx vecb=vecc,vecb xx vecc=veca,vecc xx veca=vecb , then the value of |veca|+|vecb|+|vecc| is

If vec a , vec ba n d vec c are three non-zero non-coplanar vectors, then the value of (veca.veca)vecb×vecc+(veca.vecb)vecc×veca+(veca.vecc)veca×vecb.

If veca, vecb, vecc are any three non coplanar vectors, then (veca+vecb+vecc).(vecb+vecc)xx(vecc+veca)

For any three vectors veca, vecb, vecc the value of [(veca-vecb, vecb-vecc, vecc-veca)] , is

If veca, vecb, vecc are non coplanar non null vectors such that [(veca, vecb, vecc)]=2 then {[(vecaxxvecb, vecbxxvecc, veccxxveca)]}^(2)=

If veca, vecb and vecc are three non-coplanar vectors, then (veca + vecb + vecc). [(veca + vecb) xx (veca + vecc)] equals

If veca, vecb, vecc are any three non coplanar vectors, then [(veca+vecb+vecc, veca-vecc, veca-vecb)] is equal to

If veca, vecb and vecc are non - zero vectors such that veca.vecb= veca.vecc ,then find the goemetrical relation between the vectors.