Home
Class 12
MATHS
If Z=cos phi+isin phi(AA phi in ((pi)/(3...

If `Z=cos phi+isin phi(AA phi in ((pi)/(3),pi))`, then the value of `arg(Z^(2)-Z)` is equal to (where, `arg(Z)` represents the argument of the complex number Z lying in the interval `(-pi, pi] and i^(2)=-1`)

A

`(3phi+pi)/(2)`

B

`(3phi)/(2)`

C

`(3)/(2)(phi-pi)`

D

`(3phi-pi)/(2)`

Text Solution

AI Generated Solution

The correct Answer is:
To find the value of \( \arg(Z^2 - Z) \) where \( Z = \cos \phi + i \sin \phi \) for \( \phi \in \left(\frac{\pi}{3}, \pi\right) \), we will follow these steps: ### Step 1: Calculate \( Z^2 \) Given: \[ Z = \cos \phi + i \sin \phi \] We can calculate \( Z^2 \): \[ Z^2 = (\cos \phi + i \sin \phi)^2 = \cos^2 \phi + 2i \cos \phi \sin \phi + i^2 \sin^2 \phi \] Since \( i^2 = -1 \): \[ Z^2 = \cos^2 \phi - \sin^2 \phi + 2i \cos \phi \sin \phi \] Using the double angle identities: \[ Z^2 = \cos(2\phi) + i \sin(2\phi) \] ### Step 2: Calculate \( Z^2 - Z \) Now, we compute \( Z^2 - Z \): \[ Z^2 - Z = \left(\cos(2\phi) + i \sin(2\phi)\right) - \left(\cos \phi + i \sin \phi\right) \] This simplifies to: \[ Z^2 - Z = \left(\cos(2\phi) - \cos \phi\right) + i \left(\sin(2\phi) - \sin \phi\right) \] ### Step 3: Find the argument of \( Z^2 - Z \) We need to find \( \arg(Z^2 - Z) \): \[ \arg(Z^2 - Z) = \tan^{-1}\left(\frac{\sin(2\phi) - \sin \phi}{\cos(2\phi) - \cos \phi}\right) \] ### Step 4: Simplify the expressions Using the sine and cosine subtraction formulas: \[ \sin(2\phi) - \sin(\phi) = 2 \cos\left(\frac{3\phi}{2}\right) \sin\left(\frac{\phi}{2}\right) \] \[ \cos(2\phi) - \cos(\phi) = -2 \sin\left(\frac{3\phi}{2}\right) \sin\left(\frac{\phi}{2}\right) \] Thus: \[ \frac{\sin(2\phi) - \sin(\phi)}{\cos(2\phi) - \cos(\phi)} = \frac{2 \cos\left(\frac{3\phi}{2}\right) \sin\left(\frac{\phi}{2}\right)}{-2 \sin\left(\frac{3\phi}{2}\right) \sin\left(\frac{\phi}{2}\right)} \] This simplifies to: \[ -\frac{\cos\left(\frac{3\phi}{2}\right)}{\sin\left(\frac{3\phi}{2}\right)} = -\cot\left(\frac{3\phi}{2}\right) \] ### Step 5: Determine the quadrant Given \( \phi \in \left(\frac{\pi}{3}, \pi\right) \), we find \( \frac{3\phi}{2} \) will lie in the interval \( \left(\frac{\pi}{2}, \frac{3\pi}{2}\right) \). Therefore, \( -\cot\left(\frac{3\phi}{2}\right) \) will yield a positive value in the third quadrant. ### Step 6: Final argument calculation Thus, we have: \[ \arg(Z^2 - Z) = \tan^{-1}\left(-\cot\left(\frac{3\phi}{2}\right)\right) = -\frac{3\phi}{2} + \pi \] ### Conclusion The final value of \( \arg(Z^2 - Z) \) is: \[ \arg(Z^2 - Z) = \frac{3\phi}{2} - \pi \]
Promotional Banner

Similar Questions

Explore conceptually related problems

The point representing the complex number z for which arg ((z-2)/(z+2))=pi/3 lies on

Complex number z lies on the curve S-= arg(z+3)/(z+3i) =-(pi)/(4)

Find the locus of the complex number z=x+iy , satisfying relations arg(z-1)=(pi)/(4) and |z-2-3i|=2 .

For a complex number Z, if arg Z=(pi)/(4) and |Z+(1)/(Z)|=4 , then the value of ||Z|-(1)/(|Z|)| is equal to

Find z ,\ if\ |z|=4\ and \ arg(z)=(5pi)/6 where z represents a complex number. .

If z = x + iy and arg ((z-2)/(z+2))=pi/6, then find the locus of z.

If z ne 0 be a complex number and "arg"(z)=pi//4 , then

Find the locus of a complex number z such that arg ((z-2)/(z+2))= (pi)/(3)

If arg(z)=-pi/4 then the value of arg((z^5+(bar(z))^5)/(1+z(bar(z))))^n is

If z=(-2)/(1+isqrt(3)) , then the value of "arg"(z) is a. pi b. pi/4 c. pi/3 d. (2pi)/3