Home
Class 12
MATHS
If the value of lim(xrarr(pi)/(6))(cos(x...

If the value of `lim_(xrarr(pi)/(6))(cos(x+(pi)/(3)))/((1-sqrt3tanx))` is equal to `lambda`, then the value of `120lambda^(2)` is equal to

Text Solution

AI Generated Solution

The correct Answer is:
To solve the limit problem given, we will follow these steps: ### Step 1: Identify the limit We need to evaluate the limit: \[ \lim_{x \to \frac{\pi}{6}} \frac{\cos\left(x + \frac{\pi}{3}\right)}{1 - \sqrt{3} \tan x} \] ### Step 2: Substitute \(x = \frac{\pi}{6}\) Substituting \(x = \frac{\pi}{6}\): - The numerator becomes: \[ \cos\left(\frac{\pi}{6} + \frac{\pi}{3}\right) = \cos\left(\frac{\pi}{6} + \frac{2\pi}{6}\right) = \cos\left(\frac{3\pi}{6}\right) = \cos\left(\frac{\pi}{2}\right) = 0 \] - The denominator becomes: \[ 1 - \sqrt{3} \tan\left(\frac{\pi}{6}\right) = 1 - \sqrt{3} \cdot \frac{1}{\sqrt{3}} = 1 - 1 = 0 \] Since both the numerator and denominator approach 0, we have an indeterminate form \( \frac{0}{0} \). ### Step 3: Apply L'Hôpital's Rule Since we have an indeterminate form, we can apply L'Hôpital's Rule, which states that: \[ \lim_{x \to c} \frac{f(x)}{g(x)} = \lim_{x \to c} \frac{f'(x)}{g'(x)} \] if the limit on the right side exists. #### Differentiate the numerator: \[ f(x) = \cos\left(x + \frac{\pi}{3}\right) \] Using the chain rule: \[ f'(x) = -\sin\left(x + \frac{\pi}{3}\right) \cdot \frac{d}{dx}\left(x + \frac{\pi}{3}\right) = -\sin\left(x + \frac{\pi}{3}\right) \] #### Differentiate the denominator: \[ g(x) = 1 - \sqrt{3} \tan x \] Differentiating: \[ g'(x) = -\sqrt{3} \sec^2 x \] ### Step 4: Rewrite the limit using derivatives Now we rewrite the limit: \[ \lim_{x \to \frac{\pi}{6}} \frac{-\sin\left(x + \frac{\pi}{3}\right)}{-\sqrt{3} \sec^2 x} = \lim_{x \to \frac{\pi}{6}} \frac{\sin\left(x + \frac{\pi}{3}\right)}{\sqrt{3} \sec^2 x} \] ### Step 5: Substitute \(x = \frac{\pi}{6}\) again Substituting \(x = \frac{\pi}{6}\): - The numerator becomes: \[ \sin\left(\frac{\pi}{6} + \frac{\pi}{3}\right) = \sin\left(\frac{\pi}{2}\right) = 1 \] - The denominator becomes: \[ \sqrt{3} \sec^2\left(\frac{\pi}{6}\right) = \sqrt{3} \cdot \left(\frac{2}{\sqrt{3}}\right)^2 = \sqrt{3} \cdot \frac{4}{3} = \frac{4\sqrt{3}}{3} \] ### Step 6: Evaluate the limit Thus, we have: \[ \lim_{x \to \frac{\pi}{6}} \frac{1}{\frac{4\sqrt{3}}{3}} = \frac{3}{4\sqrt{3}} = \frac{\sqrt{3}}{4} \] Let \( \lambda = \frac{\sqrt{3}}{4} \). ### Step 7: Calculate \(120\lambda^2\) Now we calculate: \[ \lambda^2 = \left(\frac{\sqrt{3}}{4}\right)^2 = \frac{3}{16} \] Then, \[ 120 \lambda^2 = 120 \cdot \frac{3}{16} = \frac{360}{16} = 22.5 \] ### Final Answer Thus, the value of \(120\lambda^2\) is \(\boxed{22.5}\).
Promotional Banner

Similar Questions

Explore conceptually related problems

The value of lim_(xrarr(pi)/(6))(2cos(x+(pi)/(3)))/((1-sqrt3tanx)) is equal to

The value of lim_(xrarr(5pi)/(4))(cot^(3)x-tanx)/(cos(x+(5pi)/(4))) is equal to

The value of lim_(xrar2pi)(cos x-(cosx)^(cosx))/(1-cos x+ln(cosx)) is equal to

The value of lim_(xrarr-oo)(x^(2)tan((1)/(x)))/(sqrt(4x^(2)-x+1)) is equal to

The value of lim_(xrarr-oo)(x^(2)tan((2)/(x)))/(sqrt(16x^(2)-x+1)) is equal to

The value of lim_(xrarr0)((1+6x)^((1)/(3))-(1+4x)^((1)/(2)))/(x^(2)) is equal to

lim _(xto (pi)/(3 )) (sin ((pi)/(3)-x))/( 2 cos x-1) is equal to:

lim_(xrarr(pi)/(2)) (1-sinx)tanx=

The value of lim_(xrarrpi//4) (tan^(3)x-tanx)/(cos(x+(pi)/(4))) is

If the value of the integral I=int_((pi)/(4))^((pi)/(3))" max "(sinx, tanx)dx is equal to ln k, then the value of k^(2) is equal to