Home
Class 12
MATHS
If .^(n+2)C(8) : ^(n-2)P(4)=57:16, then ...

If `.^(n+2)C_(8) : ^(n-2)P_(4)=57:16`, then the value of `(n)/(2)` is

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the value of \( \frac{n}{2} \) given the equation: \[ \frac{{^{(n+2)}C_8}}{{^{(n-2)}P_4}} = \frac{57}{16} \] ### Step 1: Write the formulas for combinations and permutations The combination \( ^{n}C_r \) is given by: \[ ^{n}C_r = \frac{n!}{r!(n-r)!} \] The permutation \( ^{n}P_r \) is given by: \[ ^{n}P_r = \frac{n!}{(n-r)!} \] ### Step 2: Substitute the values into the equation Substituting \( n+2 \) and \( n-2 \) into the formulas, we have: \[ ^{(n+2)}C_8 = \frac{(n+2)!}{8!(n-6)!} \] \[ ^{(n-2)}P_4 = \frac{(n-2)!}{(n-6)!} \] ### Step 3: Set up the equation Now substituting these into the ratio, we get: \[ \frac{\frac{(n+2)!}{8!(n-6)!}}{\frac{(n-2)!}{(n-6)!}} = \frac{57}{16} \] ### Step 4: Simplify the equation The \( (n-6)! \) cancels out: \[ \frac{(n+2)!}{8!(n-2)!} = \frac{57}{16} \] ### Step 5: Rewrite \( (n+2)! \) Using the property of factorials, we can rewrite \( (n+2)! \): \[ (n+2)! = (n+2)(n+1)(n)(n-1)(n-2)! \] Substituting this back into the equation gives: \[ \frac{(n+2)(n+1)(n)(n-1)(n-2)!}{8!(n-2)!} = \frac{57}{16} \] ### Step 6: Cancel out \( (n-2)! \) Now we can cancel \( (n-2)! \): \[ \frac{(n+2)(n+1)(n)(n-1)}{8!} = \frac{57}{16} \] ### Step 7: Multiply both sides by \( 8! \) Multiplying both sides by \( 8! \) gives: \[ (n+2)(n+1)(n)(n-1) = \frac{57}{16} \cdot 8! \] ### Step 8: Calculate \( 8! \) Calculating \( 8! \): \[ 8! = 40320 \] Thus: \[ \frac{57}{16} \cdot 40320 = 57 \cdot 2520 = 143640 \] ### Step 9: Set up the equation Now we have: \[ (n+2)(n+1)(n)(n-1) = 143640 \] ### Step 10: Solve for \( n \) We can use trial and error to find \( n \). Testing \( n = 19 \): \[ (19+2)(19+1)(19)(19-1) = 21 \cdot 20 \cdot 19 \cdot 18 \] Calculating this: \[ 21 \cdot 20 = 420 \] \[ 420 \cdot 19 = 7980 \] \[ 7980 \cdot 18 = 143640 \] Since this is correct, we find \( n = 19 \). ### Step 11: Find \( \frac{n}{2} \) Now we calculate: \[ \frac{n}{2} = \frac{19}{2} = 9.5 \] ### Final Answer Thus, the value of \( \frac{n}{2} \) is: \[ \boxed{9.5} \]
Promotional Banner

Similar Questions

Explore conceptually related problems

If .^(n+2)C_8:^(n-2)P_4:: 57 : 16 , find n

If .^(n+2)C_8:^(n-2)P_4:: 57 : 16 , find n

If .^(n)P_(4): .^(n)P_(5) = 1:2 , find the value of n.

If "^(2n+1)P_(n-1):^(2n-1)P_n=3:5, then find the value of n .

If ^n+2C_8:^(n-2)P_4: 57 : 16 , find ndot

If .^(n)C_(12) = .^(n)C_(16) , find the value of n

If \ ^(n+2)C_8 : \ ^(n-2)P_4=57 : 16 ,\ Solve\ for \ n

If .^(35)C_(n+7)=.^(35)C_(4n-2) then find the value of n.

If .^(n)P_(3)+.^(n)C_(n-2)=14n , the value of n is (a) 5 (b) 6 (c) 8 (d) 10

If P(n ,4)=20xxP(n ,2), then find the value of n