Home
Class 12
MATHS
Consider I(1)=int((pi)/(4))^((pi)/(2))(e...

Consider `I_(1)=int_((pi)/(4))^((pi)/(2))(e^(sinx)+1)/(e^(cosx)+1)dx and I_(2)=int_((pi)/(4))^((pi)/(2))(e^(cosx)+1)/(e^(sinx)+1)dx`, then

A

`I_(1)gtI_(2)`

B

`I_(1)ltI_(2)`

C

`I_(1)=I_(2)`

D

`I_(1)+I_(2)=0`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to evaluate the integrals \( I_1 \) and \( I_2 \) and compare their values. ### Step 1: Define the integrals We have: \[ I_1 = \int_{\frac{\pi}{4}}^{\frac{\pi}{2}} \frac{e^{\sin x} + 1}{e^{\cos x} + 1} \, dx \] \[ I_2 = \int_{\frac{\pi}{4}}^{\frac{\pi}{2}} \frac{e^{\cos x} + 1}{e^{\sin x} + 1} \, dx \] ### Step 2: Analyze the functions involved We need to analyze the behavior of the functions \( e^{\sin x} \) and \( e^{\cos x} \) over the interval \( \left[\frac{\pi}{4}, \frac{\pi}{2}\right] \). - At \( x = \frac{\pi}{4} \): \[ \sin\left(\frac{\pi}{4}\right) = \cos\left(\frac{\pi}{4}\right) = \frac{\sqrt{2}}{2} \] Thus, \[ e^{\sin\left(\frac{\pi}{4}\right)} = e^{\cos\left(\frac{\pi}{4}\right)} \] - At \( x = \frac{\pi}{2} \): \[ \sin\left(\frac{\pi}{2}\right) = 1, \quad \cos\left(\frac{\pi}{2}\right) = 0 \] Thus, \[ e^{\sin\left(\frac{\pi}{2}\right)} = e^1, \quad e^{\cos\left(\frac{\pi}{2}\right)} = e^0 = 1 \] ### Step 3: Compare \( \sin x \) and \( \cos x \) In the interval \( \left[\frac{\pi}{4}, \frac{\pi}{2}\right] \): - \( \sin x \) is increasing and \( \cos x \) is decreasing. - At \( x = \frac{\pi}{4} \), both are equal. - For \( x > \frac{\pi}{4} \), \( \sin x > \cos x \). This implies: \[ e^{\sin x} > e^{\cos x} \quad \text{for } x \in \left(\frac{\pi}{4}, \frac{\pi}{2}\right) \] ### Step 4: Establish inequalities Since \( e^{\sin x} > e^{\cos x} \), we can add 1 to both sides: \[ e^{\sin x} + 1 > e^{\cos x} + 1 \] Thus, \[ \frac{e^{\sin x} + 1}{e^{\cos x} + 1} > 1 \] for \( x \in \left(\frac{\pi}{4}, \frac{\pi}{2}\right) \). ### Step 5: Analyze \( I_2 \) For \( I_2 \): \[ \frac{e^{\cos x} + 1}{e^{\sin x} + 1} < 1 \] for \( x \in \left(\frac{\pi}{4}, \frac{\pi}{2}\right) \). ### Step 6: Conclusion Since \( I_1 \) integrates a function that is greater than 1 and \( I_2 \) integrates a function that is less than 1 over the same interval, we conclude: \[ I_1 > I_2 \] ### Final Result Thus, the final answer is: \[ I_1 > I_2 \]
Promotional Banner

Similar Questions

Explore conceptually related problems

If I_(1)=int_(0)^((pi)/(2))e^(sinx)(1+x cos x)dx and I_(2)=int_(0)^((pi)/(2))e^(cosx)(1-x sin x)dx, then [(I_(1))/(I_(2))] is equal to (where [x] denotes the greatest integer less than or equal to x)

Evaluate int_(pi/3)^(pi/2) e^x((1+sinx)/(1+cosx))dx

Evaluate: int_(pi//6)^(pi//4)(1+cotx)/(e^(x)sinx) dx

int_(0)^( 2 pi)(dx)/(1+e^{sin x})

int_(-pi//2)^(pi//2)(1)/(e^(sinx)+1)dx is equal to

int e^x ((1+sinx)/(1+cosx))dx=

Evaluate: int_(-pi//2)^(pi//2)1/(1+e^(sin x))dx

Evaluate: int_(-pi//2)^(pi//2)1/(1+e^(sinx))dx

Evaluate: int_(-pi//2)^(pi//2)(x^2cosx)/(1+e^x)dx

Evaluate: int_(-pi//2)^(pi//2)(cosx)/(1+e^x)dx