Home
Class 12
MATHS
If the integral int(lnx)/(x^(3))dx=(f(x)...

If the integral `int(lnx)/(x^(3))dx=(f(x))/(4x^(2))+C`, where `f(e )=-3` and C is the constant of integration, then the value of `f(e^(2))` is equal to

A

3

B

`-4`

C

`-5`

D

5

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( \int \frac{\ln x}{x^3} \, dx = \frac{f(x)}{4x^2} + C \) where \( f(e) = -3 \), we need to find the value of \( f(e^2) \). ### Step-by-Step Solution: 1. **Set Up the Integral**: We start with the integral: \[ I = \int \frac{\ln x}{x^3} \, dx \] 2. **Use Integration by Parts**: We will use integration by parts, where we let: - \( u = \ln x \) (thus \( du = \frac{1}{x} \, dx \)) - \( dv = \frac{1}{x^3} \, dx \) (thus \( v = -\frac{1}{2x^2} \)) The integration by parts formula is: \[ I = uv - \int v \, du \] 3. **Apply the Formula**: Substituting our values into the formula: \[ I = \ln x \left(-\frac{1}{2x^2}\right) - \int \left(-\frac{1}{2x^2}\right) \left(\frac{1}{x}\right) \, dx \] This simplifies to: \[ I = -\frac{\ln x}{2x^2} + \frac{1}{2} \int \frac{1}{x^3} \, dx \] 4. **Integrate the Remaining Integral**: The remaining integral is: \[ \int \frac{1}{x^3} \, dx = -\frac{1}{2x^2} \] Therefore: \[ I = -\frac{\ln x}{2x^2} - \frac{1}{4x^2} + C \] 5. **Combine Terms**: We can combine the terms: \[ I = \frac{-2\ln x - 1}{4x^2} + C \] 6. **Identify \( f(x) \)**: From the equation \( I = \frac{f(x)}{4x^2} + C \), we can see that: \[ f(x) = -2\ln x - 1 \] 7. **Find \( f(e) \)**: We are given \( f(e) = -3 \): \[ f(e) = -2\ln e - 1 = -2(1) - 1 = -3 \] This confirms our function \( f(x) \). 8. **Calculate \( f(e^2) \)**: Now we need to find \( f(e^2) \): \[ f(e^2) = -2\ln(e^2) - 1 \] Using the property of logarithms: \[ \ln(e^2) = 2\ln e = 2 \] Thus: \[ f(e^2) = -2(2) - 1 = -4 - 1 = -5 \] ### Final Answer: The value of \( f(e^2) \) is \( \boxed{-5} \).
Promotional Banner

Similar Questions

Explore conceptually related problems

If the integral I=int(x^(5))/(sqrt(1+x^(3)))dx =Ksqrt(x^(3)+1)(x^(3)-2)+C , (where, C is the constant of integration), then the value of 9K is equal to

Let int(dx)/(sqrt(x^(2)+1)-x)=f(x)+C such that f(0)=0 and C is the constant of integration, then the value of f(1) is

If the integral I=inte^(x^(2))x^(3)dx=e^(x^(2))f(x)+c , where c is the constant of integration and f(1)=0 , then the value of f(2) is equal to

If the integral int(x^(4)+x^(2)+1)/(x^(2)-x+1)dx=f(x)+C, (where C is the constant of integration and x in R ), then the minimum value of f'(x) is

If B=int(1)/(e^(x)+1)dx=-f(x)+C , where C is the constant of integration and e^(f(0))=2 , then the value of e^(f(-1)) is

If int(dx)/(sqrt(e^(x)-1))=2tan^(-1)(f(x))+C , (where x gt0 and C is the constant of integration ) then the range of f(x) is

If the integral I=int(tanx)/(5+7tan^(2)x)dx=kln |f(x)|+C (where C is the integration constant) and f(0)=5/7 , then the value of f((pi)/(4)) is equal to

If int x^(5)e^(-x^(2))dx = g(x)e^(-x^(2))+C , where C is a constant of integration, then g(-1) is equal to

"If"int(dx)/(x^(3)(1+x^(6))^(2/3))=xf(x)(1+x^(6))^(1/3)+C where, C is a constant of integration, then the function f(x) is equal to

If the integral I=int(x sqrtx-3x+3sqrtx-1)/(x-2sqrtx+1)dx=f(x)+C (where, x gt0 and C is the constant of integration) and f(1)=(-1)/(3) , then the value of f(9) is equal to