Home
Class 12
MATHS
If S(n)=Sigma(r=1)^(n)t(r)=(1)/(6)n(2n^(...

If `S_(n)=Sigma_(r=1)^(n)t_(r)=(1)/(6)n(2n^(2)+9n+13)`, then `Sigma_(r=1)^(n)sqrt(t_(r))` is equal to

A

`(1)/(2)n(n+1)`

B

`(1)/(2)n(n+3)`

C

`(n+1)^(2)`

D

`n^(2)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the value of \( \Sigma_{r=1}^{n} \sqrt{t_r} \) given that \( S_n = \Sigma_{r=1}^{n} t_r = \frac{1}{6} n (2n^2 + 9n + 13) \). ### Step 1: Find \( t_n \) We know that: \[ S_n = \Sigma_{r=1}^{n} t_r \] and \[ S_{n-1} = \Sigma_{r=1}^{n-1} t_r \] Thus, we have: \[ t_n = S_n - S_{n-1} \] ### Step 2: Calculate \( S_{n-1} \) Using the formula for \( S_n \): \[ S_n = \frac{1}{6} n (2n^2 + 9n + 13) \] we can find \( S_{n-1} \) by substituting \( n-1 \) into the formula: \[ S_{n-1} = \frac{1}{6} (n-1) (2(n-1)^2 + 9(n-1) + 13) \] ### Step 3: Simplify \( S_{n-1} \) Calculating \( S_{n-1} \): \[ S_{n-1} = \frac{1}{6} (n-1) (2(n^2 - 2n + 1) + 9(n - 1) + 13) \] \[ = \frac{1}{6} (n-1) (2n^2 - 4n + 2 + 9n - 9 + 13) \] \[ = \frac{1}{6} (n-1) (2n^2 + 5n + 6) \] ### Step 4: Calculate \( t_n \) Now, substituting \( S_n \) and \( S_{n-1} \) into the equation for \( t_n \): \[ t_n = S_n - S_{n-1} \] \[ = \frac{1}{6} n (2n^2 + 9n + 13) - \frac{1}{6} (n-1)(2n^2 + 5n + 6) \] ### Step 5: Simplify \( t_n \) Expanding \( t_n \): \[ t_n = \frac{1}{6} \left[ n(2n^2 + 9n + 13) - (n-1)(2n^2 + 5n + 6) \right] \] Calculating the expression inside the brackets: \[ = n(2n^2 + 9n + 13) - (2n^2 + 5n + 6)(n-1) \] Expanding the second term: \[ = n(2n^2 + 9n + 13) - (2n^3 + 5n^2 + 6n - 2n^2 - 5n - 6) \] \[ = n(2n^2 + 9n + 13) - (2n^3 + 3n^2 + n + 6) \] ### Step 6: Collect like terms Combining like terms will give us \( t_n \): \[ t_n = \frac{1}{6} \left[ n(2n^2 + 9n + 13) - 2n^3 - 3n^2 - n - 6 \right] \] ### Step 7: Find \( \sqrt{t_r} \) From our calculations, we find that: \[ t_n = (n + 1)^2 \] Thus, \[ \sqrt{t_r} = r + 1 \] ### Step 8: Calculate \( \Sigma_{r=1}^{n} \sqrt{t_r} \) Now we need to calculate: \[ \Sigma_{r=1}^{n} \sqrt{t_r} = \Sigma_{r=1}^{n} (r + 1) \] This can be separated into two sums: \[ = \Sigma_{r=1}^{n} r + \Sigma_{r=1}^{n} 1 = \frac{n(n + 1)}{2} + n \] \[ = \frac{n(n + 1)}{2} + \frac{2n}{2} = \frac{n(n + 1) + 2n}{2} = \frac{n^2 + 3n}{2} \] ### Final Result Thus, the value of \( \Sigma_{r=1}^{n} \sqrt{t_r} \) is: \[ \frac{n(n + 3)}{2} \]
Promotional Banner

Similar Questions

Explore conceptually related problems

If S_(n)=sum_(r=1)^(n) a_(r)=(1)/(6)n(2n^(2)+9n+13) , then sum_(r=1)^(n)sqrt(a_(r)) equals

If Sigma_(r=1)^(n) T_(r)=n(2n^(2)+9n+13) , then find the sum Sigma_(r=1)^(n)sqrt(T_(r)) .

Sigma_(r=0)^(n)(n-r)(.^(n)C_(r))^(2) is equal to

If Sigma_(r=1)^(n) T_r=n/8(n+1)(n+2)(n+3) then find Sigma_(r=1)^(n) 1/T_r

If S_(r)= sum_(r=1)^(n)T_(1)=n(n+1)(n+2)(n+3) then sum_(r=1)^(10) 1/(T_(r)) is equal to

If Sigma_(r=1)^(n) r^4=I(n), " then "Sigma__(r=1)^(n) (2r -1)^4 is equal to

If Sigma_(r=1)^(2n) sin^(-1) x^(r )=n pi, then Sigma__(r=1)^(2n) x_(r ) is equal to

If sum_(r=1)^n T_r=n(2n^2+9n+13), then find the sum sum_(r=1)^nsqrt(T_r)dot

If Sigma_(r=1)^(n)t_(r)=(1)/(6)n(n+1)(n+2), AA n ge 1, then the value of lim_(nrarroo)Sigma_(r=1)^(n)(1)/(t_(r)) is equal to

The value of Sigma_(r=1)^(n) (a+r+ar)(-a)^r is equal to