Home
Class 12
MATHS
Consider three vectors vec(V(1))=(sin ...

Consider three vectors
`vec(V_(1))=(sin theta)hati+(cos theta)hatj+(a-3)hatk, vec(V_(2))=(sin theta+cos theta)+hati+(cos theta-sin theta)hatj` and `+(b-4)hatk`
`vec(V_(3))=(cos theta)hati+(sin theta)hatj+(c-5)hatk`. If the resultant of `vec(V_(1)),vec(V_(2)) and vec(V_(3))` is equal to `lambda hati`, where `theta in [-pi, pi]` and `a, b, c in N,` then the number of quadruplets `(a, b, c, theta)` are

A

55

B

110

C

91

D

182

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to determine the number of quadruplets \((a, b, c, \theta)\) such that the resultant of the three vectors \(\vec{V_1}\), \(\vec{V_2}\), and \(\vec{V_3}\) is equal to \(\lambda \hat{i}\). ### Step 1: Write down the vectors The vectors are given as: \[ \vec{V_1} = (\sin \theta) \hat{i} + (\cos \theta) \hat{j} + (a - 3) \hat{k} \] \[ \vec{V_2} = (\sin \theta + \cos \theta) \hat{i} + (\cos \theta - \sin \theta) \hat{j} + (b - 4) \hat{k} \] \[ \vec{V_3} = (\cos \theta) \hat{i} + (\sin \theta) \hat{j} + (c - 5) \hat{k} \] ### Step 2: Find the resultant vector The resultant vector \(\vec{R}\) is given by: \[ \vec{R} = \vec{V_1} + \vec{V_2} + \vec{V_3} \] Calculating the components: - **i-component**: \[ R_i = \sin \theta + (\sin \theta + \cos \theta) + \cos \theta = 2 \sin \theta + \cos \theta \] - **j-component**: \[ R_j = \cos \theta + (\cos \theta - \sin \theta) + \sin \theta = 2 \cos \theta \] - **k-component**: \[ R_k = (a - 3) + (b - 4) + (c - 5) = a + b + c - 12 \] Thus, the resultant vector can be expressed as: \[ \vec{R} = (2 \sin \theta + \cos \theta) \hat{i} + (2 \cos \theta) \hat{j} + (a + b + c - 12) \hat{k} \] ### Step 3: Set the resultant equal to \(\lambda \hat{i}\) According to the problem, we have: \[ \vec{R} = \lambda \hat{i} \] This implies: 1. \(2 \sin \theta + \cos \theta = \lambda\) 2. \(2 \cos \theta = 0\) 3. \(a + b + c - 12 = 0\) ### Step 4: Solve for \(\theta\) From the second equation \(2 \cos \theta = 0\): \[ \cos \theta = 0 \] This gives us: \[ \theta = -\frac{\pi}{2} \quad \text{or} \quad \theta = \frac{\pi}{2} \] ### Step 5: Solve for \(a + b + c\) From the third equation: \[ a + b + c = 12 \] Since \(a, b, c\) are natural numbers, we have \(a, b, c \geq 1\). Thus, we can rewrite: \[ a' + b' + c' = 9 \] where \(a' = a - 1\), \(b' = b - 1\), \(c' = c - 1\) (which are non-negative integers). ### Step 6: Count the solutions The number of non-negative integer solutions to \(a' + b' + c' = 9\) can be found using the stars and bars combinatorial method: \[ \text{Number of solutions} = \binom{9 + 3 - 1}{3 - 1} = \binom{11}{2} = \frac{11 \times 10}{2} = 55 \] ### Step 7: Consider the values of \(\theta\) Since \(\theta\) can take 2 values (\(-\frac{\pi}{2}\) and \(\frac{\pi}{2}\)), the total number of quadruplets \((a, b, c, \theta)\) is: \[ \text{Total quadruplets} = 55 \times 2 = 110 \] ### Conclusion The number of quadruplets \((a, b, c, \theta)\) is **110**.
Promotional Banner

Similar Questions

Explore conceptually related problems

sin^(3)theta + sin theta - sin theta cos^(2)theta =

Prove that (cos^3 theta-sin^3 theta)/(cos theta-sin theta) = 1+cos theta sin theta

Prove that : sin theta cos^3 theta - cos theta sin^3 theta = 1/4 sin4theta .

Prove that: (a) (sin 2 theta)/(1+cos 2 theta)=tan theta (b) (1+sin 2 theta+cos 2theta)/(1+sin2 theta-cos 2 theta)=cot theta

Prove that (cos^3theta+sin^3 theta)/(cos theta+sin theta)+(cos^3 theta-sin^3 theta)/(cos theta-sin theta)=2

Prove that: sin4 theta=4 sin theta cos^(3)theta-4cos theta sin^(3)theta

(2 sin theta*cos theta - cos theta)/(1-sin theta+sin^2 theta-cos^2 theta) = cot theta

1 + (cos 2 theta + cos 6 theta)/(cos 4 theta) = (sin 3 theta)/(sin theta).

Prove that : (cos 4theta + cos 3theta + cos 2theta)/(sin 4theta + sin 3theta + sin 2theta) = cot 3theta

Prove that : (sin theta + sin 3theta + sin 5theta)/(cos theta + cos 3theta + cos 5theta) = tan 3theta