Home
Class 12
MATHS
Let A=[a(ij)](3xx3) be a matrix, where a...

Let `A=[a_(ij)]_(3xx3)` be a matrix, where `a_(ij)={{:(x,inej),(1,i=j):} Aai, j in N & i,jle2.` If `C_(ij)` be the cofactor of `a_(ij) and C_(12)+C_(23)+C_(32)=6`, then the number of value(s) of `x(AA x in R)` is (are)

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to analyze the given matrix \( A \) and its cofactors. The matrix \( A \) is defined as follows: \[ A = \begin{bmatrix} 1 & x & x \\ x & 1 & x \\ x & x & 1 \end{bmatrix} \] ### Step 1: Calculate the cofactors \( C_{12}, C_{23}, C_{32} \) 1. **Cofactor \( C_{12} \)**: - The cofactor \( C_{12} \) is calculated by removing the first row and second column from matrix \( A \): \[ C_{12} = (-1)^{1+2} \det\begin{bmatrix} x & x \\ x & 1 \end{bmatrix} = -\det\begin{bmatrix} x & x \\ x & 1 \end{bmatrix} \] - The determinant is calculated as: \[ \det\begin{bmatrix} x & x \\ x & 1 \end{bmatrix} = x \cdot 1 - x \cdot x = x - x^2 \] - Therefore, \[ C_{12} = -(x - x^2) = x^2 - x \] 2. **Cofactor \( C_{23} \)**: - The cofactor \( C_{23} \) is calculated by removing the second row and third column: \[ C_{23} = (-1)^{2+3} \det\begin{bmatrix} 1 & x \\ x & x \end{bmatrix} = \det\begin{bmatrix} 1 & x \\ x & x \end{bmatrix} \] - The determinant is: \[ \det\begin{bmatrix} 1 & x \\ x & x \end{bmatrix} = 1 \cdot x - x \cdot x = x - x^2 \] - Therefore, \[ C_{23} = x - x^2 \] 3. **Cofactor \( C_{32} \)**: - The cofactor \( C_{32} \) is calculated by removing the third row and second column: \[ C_{32} = (-1)^{3+2} \det\begin{bmatrix} 1 & x \\ x & x \end{bmatrix} = -\det\begin{bmatrix} 1 & x \\ x & x \end{bmatrix} \] - The determinant is the same as above: \[ C_{32} = -(x - x^2) = x^2 - x \] ### Step 2: Sum of the cofactors Now we sum the cofactors: \[ C_{12} + C_{23} + C_{32} = (x^2 - x) + (x - x^2) + (x^2 - x) \] This simplifies to: \[ C_{12} + C_{23} + C_{32} = x^2 - x + x - x^2 + x^2 - x = x^2 - x \] ### Step 3: Set the equation to 6 According to the problem, we have: \[ C_{12} + C_{23} + C_{32} = 6 \] Thus, we set up the equation: \[ x^2 - x = 6 \] Rearranging gives: \[ x^2 - x - 6 = 0 \] ### Step 4: Solve the quadratic equation We can factor this equation: \[ (x - 3)(x + 2) = 0 \] Thus, the solutions are: \[ x = 3 \quad \text{or} \quad x = -2 \] ### Conclusion The number of values of \( x \) is 2.
Promotional Banner

Similar Questions

Explore conceptually related problems

Let A=[a_(ij)]_(mxxn) be a matrix such that a_(ij)=1 for all I,j. Then ,

If A=[a_(ij)]_(2xx2) where a_(ij)={{:(1",",if, I ne j),(0",", if,i=j):} then A^(2) is equal to

If matrix A=[a_(ij)]_(2x2), where a_(ij)={{:(1"," , i ne j),(0",", i=j):} then A^(3) is equal to

Consider a matrix A=[a_(ij)[_(3xx3) where, a_(ij)={{:(i+j,ij="even"),(i-j,ij="odd"):} . If b_(ij) is the cafactor of a_(ij) in matrix A and C_(ij)=Sigma_(r=1)^(3)a_(ir)b_(jr) , then det [C_(ij)]_(3xx3) is

If matrix A=[a_(ij)]_(2X2) , where a_(ij)={[1,i!=j],[0,i=j]}, then A^2 is equal to

If matrix A=[a_(ij)]_(2X2) , where a_(ij)={[1,i!=j],[0,i=j]}, then A^2 is equal to

Let A=[a_(ij)]_(nxxn) be a square matrix and let c_(ij) be cofactor of a_(ij) in A. If C=[c_(ij)] , then

Consider a matrix A=[a_(ij)]_(3xx3) , where a_(ij)={{:(i+j","if","ij=even),(i-j","if","ij=odd):} if b_(ij) is cofactor of a_(ij) in matrix A and c_(ij)=sum_(r=1)^(3)a_(ir)b_(jr) , then value of root3(det[c_(ij)]_(3xx3)) is

Let A=[a_(ij)]_(3xx3) be a scalar matrix and a_(11)+a_(22)+a_(33)=15 then write matrix A.

if A=[a_(ij)]_(2*2) where a_(ij)={i+j , i!=j and i^2-2j ,i=j} then A^-1 is equal to