Home
Class 12
CHEMISTRY
What is the value of DeltaG(kJ//mol) at ...

What is the value of `DeltaG(kJ//mol)` at 298 K at some non - equilibrium condition?
Given the concentrations of `[NH_(3)]` is 0.05 M and `[NH_(4)^(+)]=[OH^(-)]=0.002M` in the presence of excess water. Also
`DeltaG_("Reaction")^(@)=+"26.81 KJ mol."`
`NH_(3)(aq)+H_(2)O(l)hArr NH_(4)^(+)(aq)+OH^(-)(aq)`

A

`+3.437`

B

`-9.433`

C

`+50.18`

D

`-50.18`

Text Solution

AI Generated Solution

The correct Answer is:
To find the value of ΔG (Gibbs free energy change) at 298 K under non-equilibrium conditions for the given reaction, we will follow these steps: ### Step 1: Write the Reaction and Identify Given Data The reaction is: \[ \text{NH}_3(aq) + \text{H}_2\text{O}(l) \rightleftharpoons \text{NH}_4^+(aq) + \text{OH}^-(aq) \] Given: - \([NH_3] = 0.05 \, M\) - \([NH_4^+] = [OH^-] = 0.002 \, M\) - \(\Delta G^\circ = +26.81 \, kJ/mol\) ### Step 2: Calculate the Reaction Quotient (Q) The reaction quotient \(Q\) is calculated using the formula: \[ Q = \frac{[\text{NH}_4^+][\text{OH}^-]}{[\text{NH}_3]} \] Substituting the values: \[ Q = \frac{(0.002)(0.002)}{0.05} = \frac{0.000004}{0.05} = 8 \times 10^{-5} \] ### Step 3: Convert ΔG° to Joules Since ΔG° is given in kJ/mol, we convert it to Joules: \[ \Delta G^\circ = 26.81 \, kJ/mol = 26810 \, J/mol \] ### Step 4: Use the Gibbs Free Energy Equation The equation to find ΔG is: \[ \Delta G = \Delta G^\circ + RT \ln(Q) \] Where: - \(R = 8.314 \, J/(mol \cdot K)\) - \(T = 298 \, K\) ### Step 5: Calculate RT Calculating \(RT\): \[ RT = 8.314 \, J/(mol \cdot K) \times 298 \, K = 2477.572 \, J/mol \] ### Step 6: Calculate ln(Q) Now, calculate \(\ln(Q)\): \[ \ln(8 \times 10^{-5}) \approx -9.125 \] ### Step 7: Substitute Values into the ΔG Equation Now substitute these values into the ΔG equation: \[ \Delta G = 26810 \, J/mol + 2477.572 \, J/mol \times (-9.125) \] Calculating the second term: \[ 2477.572 \times (-9.125) \approx -22500.5 \, J/mol \] Thus: \[ \Delta G = 26810 - 22500.5 \approx 4309.5 \, J/mol \] ### Step 8: Convert ΔG back to kJ Convert ΔG back to kJ: \[ \Delta G \approx 4.3095 \, kJ/mol \] ### Step 9: Round to Appropriate Significant Figures Rounding to three significant figures: \[ \Delta G \approx 4.31 \, kJ/mol \] ### Final Answer The value of ΔG at 298 K under the given non-equilibrium conditions is approximately: \[ \Delta G \approx 4.31 \, kJ/mol \] ---
Promotional Banner

Similar Questions

Explore conceptually related problems

Write the equilibrium constant expressions for the following reactions. NH_3( aq) +H_2O (l) hArr NH_4^(+) (aq) +OH^(-) (aq)

What is the reaction given below, called ? H_(2)O_((l)) + H_(2)O_((l)) hArr H_(3)O_((aq))^(+) + OH_((aq))^(-)

Water [Dissociation of aq . Soln ] NH_(3)+H_(2)O to_____ [NH_(4)OHhArrNH_(4)^(+)+_____ ]

If the concentration of [NH_(4)^(+)] in a solution having 0.02 M NH_(3) and 0.005 M Ca ( OH)_(2) is a xx 10^(-6) M,determine a. [k_(b) ( NH_(3)) = 1.8 xx 10^(-5) ]

In a buffer solution concentration of (NH_4)_2SO_4 and NH_4OH are 0.4 M and 0.8 M respectively, pH of the solution is [K_a(NH_4^+)=10^-8]

What is DeltaG^(ɵ) for the following reaction? 1/2 N_(2)(g)+3/2 H_(2)(g) hArr NH_(3)(g), K_(p)=4.42xx10^(4) at 25^(@)C

What is DeltaG^(ɵ) for the following reaction? 1/2 N_(2)(g)+3/2 H_(2)(g) hArr NH_(3)(g), K_(p)=4.42xx10^(4) at 25^(@)C

Accepting the definition that an acid is a proton donor, the acid in the following reaction NH_(3)+H_(2)O rarr NH_(4)^(+)+OH^(-) is

What is the acidity constant for the following reaction given that the hydronium ion concentration of a 0.04 M solution of Ni^(2+) solution of nickel(II) perchlorate is 4.5xx10^(-6) ? Ni^(2+)(aq.)+2H_(2)O(l)hArrNi(OH)^(+)(aq.)+H_(3)O^(+)(aq.)

The pH of 0.02 M NH_(4)Cl (aq) (pK_(b)=4.73) is equal to