Home
Class 12
MATHS
Consider the matrix A=[(3,1),(-6,-2)], t...

Consider the matrix `A=[(3,1),(-6,-2)]`, then `(I+A)^(40)` is equal to

A

`I+2^(38)A`

B

`I+2^(39)A`

C

`I+(2^(40)+1)A`

D

`I+(2^(40)-1)A`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to compute \((I + A)^{40}\) where \(A = \begin{pmatrix} 3 & 1 \\ -6 & -2 \end{pmatrix}\). ### Step 1: Calculate the identity matrix \(I\) The identity matrix \(I\) for a \(2 \times 2\) matrix is: \[ I = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \] ### Step 2: Compute \(I + A\) Now, we add the matrix \(A\) to the identity matrix \(I\): \[ I + A = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} + \begin{pmatrix} 3 & 1 \\ -6 & -2 \end{pmatrix} = \begin{pmatrix} 1 + 3 & 0 + 1 \\ 0 - 6 & 1 - 2 \end{pmatrix} = \begin{pmatrix} 4 & 1 \\ -6 & -1 \end{pmatrix} \] ### Step 3: Calculate the determinant of \(A\) The determinant of matrix \(A\) is calculated as follows: \[ \text{det}(A) = (3)(-2) - (-6)(1) = -6 + 6 = 0 \] ### Step 4: Analyze the implications of the determinant Since the determinant of \(A\) is \(0\), this means that \(A\) is a singular matrix. For singular matrices, we have \(A^2 = A\) (idempotent property). ### Step 5: Compute \(A^2\) We can verify this: \[ A^2 = A \cdot A = \begin{pmatrix} 3 & 1 \\ -6 & -2 \end{pmatrix} \cdot \begin{pmatrix} 3 & 1 \\ -6 & -2 \end{pmatrix} = \begin{pmatrix} 3 \cdot 3 + 1 \cdot (-6) & 3 \cdot 1 + 1 \cdot (-2) \\ -6 \cdot 3 + (-2) \cdot (-6) & -6 \cdot 1 + (-2) \cdot (-2) \end{pmatrix} \] Calculating this gives: \[ = \begin{pmatrix} 9 - 6 & 3 - 2 \\ -18 + 12 & -6 + 4 \end{pmatrix} = \begin{pmatrix} 3 & 1 \\ -6 & -2 \end{pmatrix} = A \] ### Step 6: Generalize the powers of \(A\) Since \(A^2 = A\), it follows that: \[ A^n = A \quad \text{for all } n \geq 1 \] ### Step 7: Compute \((I + A)^{40}\) Using the binomial expansion: \[ (I + A)^{40} = I^{40} + \binom{40}{1} I^{39} A + \binom{40}{2} I^{38} A^2 + \ldots + A^{40} \] Since \(I^n = I\) and \(A^n = A\) for \(n \geq 1\), we can simplify: \[ (I + A)^{40} = I + 40A + 0 + 0 + \ldots + 0 = I + 40A \] ### Step 8: Substitute \(A\) back into the equation Now substituting \(A\): \[ I + 40A = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} + 40 \begin{pmatrix} 3 & 1 \\ -6 & -2 \end{pmatrix} = \begin{pmatrix} 1 + 120 & 0 + 40 \\ 0 - 240 & 1 - 80 \end{pmatrix} = \begin{pmatrix} 121 & 40 \\ -240 & -79 \end{pmatrix} \] ### Final Answer Thus, \((I + A)^{40} = \begin{pmatrix} 121 & 40 \\ -240 & -79 \end{pmatrix}\). ---
Promotional Banner

Similar Questions

Explore conceptually related problems

(1+2i)/(1+3i) is equal to

for the matrix A=[{:(1,5),(6,7):}], verify that : (I) (A+A') is a symmetric matrix. (ii) (A-A') is a skew symmetric matrix.

If A is a symmetric matrix and B is a skew-symmetric matrix such that A + B = [{:(2,3),(5,-1):}] , then AB is equal to

If A is a symmetric matrix and B is a skew-symmetric matrix such that A + B = [{:(2,3),(5,-1):}] , then AB is equal to

If A is square matrix such that A^(2)=A , then (I-A)^(3)+A is equal to

Consider the matrix A=[(x, 2y,z),(2y,z,x),(z,x,2y)] and A A^(T)=9I. If Tr(A) gt0 and xyz=(1)/(6) , then the vlaue of x^(3)+8y^(3)+z^(3) is equal to (where, Tr(A), I and A^(T) denote the trace of matrix A i.e. the sum of all the principal diagonal elements, the identity matrix of the same order of matrix A and the transpose of matrix A respectively)

Let A be a non - singular symmetric matrix of order 3. If A^(T)=A^(2)-I , then (A-I)^(-1) is equal to

If A is a square matrix such that A^(2)= I , then (A-I)^(3)+(A+I)^(3)-7A is equal to

If A is a square matrix such that A^(2)= I , then (A-I)^(3)+(A+I)^(3)-7A is equal to

For a matrix A, if A^(2)=A and B=I-A then AB+BA +I-(I-A)^(2) is equal to (where, I is the identity matrix of the same order of matrix A)