Home
Class 12
MATHS
The value of the integral I=int(0)^((pi)...

The value of the integral `I=int_(0)^((pi)/(2))(cosx-sinx)/(10-x^(2)+(pix)/(2))dx` is equal to

A

`(pi)/(2)`

B

`pi`

C

0

D

`4pi`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \[ I = \int_{0}^{\frac{\pi}{2}} \frac{\cos x - \sin x}{10 - x^2 + \frac{\pi}{2} x} \, dx, \] we can utilize a property of definite integrals. The property states that if \( f(x) \) is a function defined on the interval \([a, b]\), then: \[ \int_{a}^{b} f(x) \, dx = \int_{a}^{b} f(a + b - x) \, dx. \] ### Step 1: Apply the property In our case, \( a = 0 \) and \( b = \frac{\pi}{2} \). Therefore, we can rewrite the integral as: \[ I = \int_{0}^{\frac{\pi}{2}} \frac{\cos(\frac{\pi}{2} - x) - \sin(\frac{\pi}{2} - x)}{10 - (\frac{\pi}{2} - x)^2 + \frac{\pi}{2}(\frac{\pi}{2} - x)} \, dx. \] ### Step 2: Simplify the numerator Using the trigonometric identities, we have: \[ \cos\left(\frac{\pi}{2} - x\right) = \sin x \quad \text{and} \quad \sin\left(\frac{\pi}{2} - x\right) = \cos x. \] Thus, the numerator becomes: \[ \sin x - \cos x. \] ### Step 3: Simplify the denominator Now, let's simplify the denominator: \[ 10 - \left(\frac{\pi}{2} - x\right)^2 + \frac{\pi}{2}\left(\frac{\pi}{2} - x\right). \] Calculating \(\left(\frac{\pi}{2} - x\right)^2\): \[ \left(\frac{\pi}{2} - x\right)^2 = \frac{\pi^2}{4} - \pi x + x^2. \] Substituting this back into the denominator gives: \[ 10 - \left(\frac{\pi^2}{4} - \pi x + x^2\right) + \frac{\pi^2}{4} - \frac{\pi}{2} x = 10 - \frac{\pi^2}{4} + \pi x - x^2 - \frac{\pi}{2} x. \] Combining like terms results in: \[ 10 - \frac{\pi^2}{4} + \left(\pi - \frac{\pi}{2}\right)x - x^2 = 10 - \frac{\pi^2}{4} + \frac{\pi}{2}x - x^2. \] ### Step 4: Write the new integral Now we can write the integral as: \[ I = \int_{0}^{\frac{\pi}{2}} \frac{\sin x - \cos x}{10 - \frac{\pi^2}{4} + \frac{\pi}{2}x - x^2} \, dx. \] ### Step 5: Combine the two integrals Now we have: \[ I = \int_{0}^{\frac{\pi}{2}} \frac{\cos x - \sin x}{10 - x^2 + \frac{\pi}{2}x} \, dx \] and \[ I = \int_{0}^{\frac{\pi}{2}} \frac{\sin x - \cos x}{10 - \frac{\pi^2}{4} + \frac{\pi}{2}x - x^2} \, dx. \] Adding these two expressions for \( I \): \[ 2I = \int_{0}^{\frac{\pi}{2}} \left( \frac{\cos x - \sin x + \sin x - \cos x}{10 - x^2 + \frac{\pi}{2}x} \right) \, dx = 0. \] ### Step 6: Solve for \( I \) Thus, we have: \[ 2I = 0 \implies I = 0. \] ### Final Answer The value of the integral \( I \) is: \[ \boxed{0}. \]
Promotional Banner

Similar Questions

Explore conceptually related problems

The value of the integral int_(0) ^(pi//2) sin ^3 x dx is :

The value of the integral int_(0)^(pi//2) sin^(6) x dx , is

Given int_(0)^(pi//2)(dx)/(1+sinx+cosx)=A . Then the value of the definite integral int_(0)^(pi//2)(sinx)/(1+sinx+cosx)dx is equal to

The value of the integral int_(0)^(pi)(e^(|cosx|)sinx)/(1+e^(cotx))dx is equal to

The value of the integral int_(-pi//3)^(pi//3) (x sinx)/(cos^(2)x)dx , is

The value of the integral int_(-pi//2)^(pi//2) sqrt(cosx-cos^(2)x)dx is

The value of the integral int_(a)^(a+pi//2) (|sin x|+|cosx|)dx is

The value of the integral I=int_(0)^(pi)(x)/(1+tan^(6)x)dx, (x not equal to (pi)/(2) ) is equal to

int_0^(pi/2) cosx/(1+sinx)dx

The value of the integral int_0^pi(x^2sinx)/((2x-pi)(1+cos^2x))\ dx