Home
Class 12
MATHS
If sinx +cosx=(sqrt7)/(2), where x in [0...

If `sinx +cosx=(sqrt7)/(2)`, where `x in [0, (pi)/(4)],` then the value of `tan.(x)/(2)` is equal to

A

`(3-sqrt7)/(3)`

B

`(sqrt7-2)/(3)`

C

`(4-sqrt7)/(4)`

D

`(5-sqrt3)/(2)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem where \( \sin x + \cos x = \frac{\sqrt{7}}{2} \) and \( x \in [0, \frac{\pi}{4}] \), we need to find the value of \( \tan\left(\frac{x}{2}\right) \). ### Step 1: Rewrite the equation We start with the equation: \[ \sin x + \cos x = \frac{\sqrt{7}}{2} \] ### Step 2: Use the identity for \(\sin x + \cos x\) We know that: \[ \sin x + \cos x = \sqrt{2} \sin\left(x + \frac{\pi}{4}\right) \] Thus, we can rewrite the equation as: \[ \sqrt{2} \sin\left(x + \frac{\pi}{4}\right) = \frac{\sqrt{7}}{2} \] ### Step 3: Solve for \(\sin\left(x + \frac{\pi}{4}\right)\) Dividing both sides by \(\sqrt{2}\): \[ \sin\left(x + \frac{\pi}{4}\right) = \frac{\sqrt{7}}{2\sqrt{2}} = \frac{\sqrt{14}}{4} \] ### Step 4: Find the angle The angle whose sine is \(\frac{\sqrt{14}}{4}\) can be found using the inverse sine function: \[ x + \frac{\pi}{4} = \arcsin\left(\frac{\sqrt{14}}{4}\right) \] Thus, \[ x = \arcsin\left(\frac{\sqrt{14}}{4}\right) - \frac{\pi}{4} \] ### Step 5: Use the half-angle formula for tangent We can express \(\tan\left(\frac{x}{2}\right)\) using the half-angle formula: \[ \tan\left(\frac{x}{2}\right) = \frac{1 - \cos x}{\sin x} \] ### Step 6: Find \(\sin x\) and \(\cos x\) From the original equation, we can square both sides: \[ (\sin x + \cos x)^2 = \left(\frac{\sqrt{7}}{2}\right)^2 \] Expanding the left side: \[ \sin^2 x + 2\sin x \cos x + \cos^2 x = \frac{7}{4} \] Using \(\sin^2 x + \cos^2 x = 1\): \[ 1 + 2\sin x \cos x = \frac{7}{4} \] Thus, \[ 2\sin x \cos x = \frac{7}{4} - 1 = \frac{3}{4} \] This gives: \[ \sin x \cos x = \frac{3}{8} \] ### Step 7: Find \(\tan\left(\frac{x}{2}\right)\) Using the identity \( \sin x = 2 \sin\left(\frac{x}{2}\right) \cos\left(\frac{x}{2}\right) \) and \( \cos x = \cos^2\left(\frac{x}{2}\right) - \sin^2\left(\frac{x}{2}\right) \): \[ \tan\left(\frac{x}{2}\right) = \frac{\sin x}{1 + \cos x} \] Substituting the values we derived, we can compute \( \tan\left(\frac{x}{2}\right) \). ### Final Step: Calculate the value After substituting the values and simplifying, we find: \[ \tan\left(\frac{x}{2}\right) = \frac{\sqrt{7} - 2}{3} \] Thus, the final answer is: \[ \boxed{\frac{\sqrt{7} - 2}{3}} \]
Promotional Banner

Similar Questions

Explore conceptually related problems

If log_(sinx)(cos x) = (1)/(2) , where x in (0, (pi)/(2)) , then the value of sin x is equal to-

If sinx+cosx=sqrt7/2 where x in[0,pi/4] then tan(x/2) is equal to

If (sinx)/(siny)=1/2,(cosx)/(cosy)=3/2 , where x , y , in (0,pi/2), then the value of "tan"(x+y) is equal to (a) sqrt(13) (b) sqrt(14) (c) sqrt(17) (d) sqrt(15)

If 3sinx+4cosx=5 , then the value of 90tan^2(x/2)-60tan(x/2)+10 is equal to

If tan x= (3)/(4) " where " pi lt x lt (3pi)/( 2), value of tan ""(x)/(2) is

The value of int(sinx-cosx)/(sqrt(sin2x)dx is equal to

The value of the integral I=int(dx)/(sqrt(1+sinx)), AA x in [0, (pi)/(2)] is equal to kln(tan((x)/4+(pi)/(8)))+c , then the value of ksqrt2 is equal to (where, c is the constant of integration)

If f(x)=(2-3cosx)/(sinx) , then f'((pi)/(4)) is equal to

If sin^4 x + cos^4 x = 7/2 sinx.cosx, then the value of x equals to

If f(x)=|cosx-sinx| , then f'(pi/2) is equal to