Home
Class 12
MATHS
The statement ~prarr(qrarrp) is equivale...

The statement `~prarr(qrarrp)` is equivalent to

A

`prarr(prarrq)`

B

`prarr(p vv q)`

C

`q rarrp`

D

`q rarr (prarrq)`

Text Solution

AI Generated Solution

The correct Answer is:
To determine the equivalence of the statement `~p → (q → p)`, we will use a truth table to analyze the logical values of the components involved. ### Step-by-Step Solution: 1. **Identify Variables**: - Let \( p \) and \( q \) be the two propositions. 2. **Construct the Truth Table**: - We will create a truth table that includes the columns for \( p \), \( q \), \( \neg p \) (negation of \( p \)), \( p \rightarrow q \) (implication from \( p \) to \( q \)), and \( q \rightarrow p \) (implication from \( q \) to \( p \)). | \( p \) | \( q \) | \( \neg p \) | \( p \rightarrow q \) | \( q \rightarrow p \) | |---------|---------|---------------|------------------------|------------------------| | T | T | F | T | T | | T | F | F | F | T | | F | T | T | T | F | | F | F | T | T | T | 3. **Calculate \( \neg p \)**: - Negation of \( p \) is true when \( p \) is false and vice versa. 4. **Calculate \( p \rightarrow q \)**: - This implication is false only when \( p \) is true and \( q \) is false. 5. **Calculate \( q \rightarrow p \)**: - This implication is false only when \( q \) is true and \( p \) is false. 6. **Evaluate the Statement**: - We need to evaluate \( \neg p \rightarrow (q \rightarrow p) \). - This will be true unless \( \neg p \) is true and \( q \rightarrow p \) is false. | \( p \) | \( q \) | \( \neg p \) | \( q \rightarrow p \) | \( \neg p \rightarrow (q \rightarrow p) \) | |---------|---------|---------------|------------------------|------------------------------------------| | T | T | F | T | T | | T | F | F | T | T | | F | T | T | F | F | | F | F | T | T | T | 7. **Final Evaluation**: - The final column shows the truth values for \( \neg p \rightarrow (q \rightarrow p) \). The statement is false only when \( p \) is false and \( q \) is true. 8. **Compare with Options**: - Now we need to check which of the options matches this truth table. - After checking all options, we find that option C, which is \( q \rightarrow p \), matches the truth values of our original statement. ### Conclusion: The statement `~p → (q → p)` is equivalent to option C, which is \( q \rightarrow p \).
Promotional Banner

Similar Questions

Explore conceptually related problems

The statement ~(~prarrq) is equivalent to (A) pvv~q (B) ~p^^q (C) ~p^^~q (D) ~pvvq

If p and q are two logical statements, then prArr (qrArrp) is equivalent to

The statement ~ p^^(rvvp) is - (1)equivalent to negation of pvvr (2) equivalent to ~p^^r (3) a tautology (4) a fallacy

Statement 1 : The statement A rarr (A rarr B) . Is equivalent to A rarr (A vv B) statement 2 : The statement ~[(A ^^ B) rarr (~A vv B)] is a tautology

The statement ~(phArr q) is not equivalent to

The statement (~(phArr q))^^p is equivalent to

If p and q are logical statements, then (~p)rarr(prarrq) is equivalent to

The statement p to(q to p) is equivalent to

For two statements p and q, the statement ~(pvv(~q)) is equivalent to

If p and q are two logical statements, then ~(pvvq)rarr(prarrq) is equivalent to