Home
Class 12
MATHS
If the integral I=inte^(x^(2))x^(3)dx=e^...

If the integral `I=inte^(x^(2))x^(3)dx=e^(x^(2))f(x)+c`, where c is the constant of integration and `f(1)=0`, then the value of `f(2)` is equal to

A

`4`

B

`(5)/(2)`

C

`(3)/(2)`

D

`3`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to evaluate the integral \( I = \int e^{x^2} x^3 \, dx \) and express it in the form \( I = e^{x^2} f(x) + c \), where \( c \) is the constant of integration. We also know that \( f(1) = 0 \) and we need to find \( f(2) \). ### Step-by-Step Solution: 1. **Set Up the Integral:** \[ I = \int e^{x^2} x^3 \, dx \] 2. **Substitution:** Let \( t = x^2 \). Then, differentiating both sides gives: \[ dt = 2x \, dx \quad \Rightarrow \quad dx = \frac{dt}{2x} \] Since \( x = \sqrt{t} \), we can substitute \( dx \): \[ dx = \frac{dt}{2\sqrt{t}} \] Now, substituting in the integral: \[ I = \int e^{t} (\sqrt{t})^3 \cdot \frac{dt}{2\sqrt{t}} = \int e^{t} \frac{t^{3/2}}{2\sqrt{t}} \, dt = \int e^{t} \frac{t}{2} \, dt \] 3. **Simplifying the Integral:** \[ I = \frac{1}{2} \int t e^{t} \, dt \] 4. **Integration by Parts:** For \( \int t e^{t} \, dt \), let: - \( u = t \) and \( dv = e^{t} dt \) - Then, \( du = dt \) and \( v = e^{t} \) Using integration by parts: \[ \int u \, dv = uv - \int v \, du \] We get: \[ \int t e^{t} \, dt = t e^{t} - \int e^{t} \, dt = t e^{t} - e^{t} + C \] 5. **Substituting Back:** Now substituting back into the expression for \( I \): \[ I = \frac{1}{2} \left( t e^{t} - e^{t} \right) + C = \frac{1}{2} e^{t} (t - 1) + C \] Replacing \( t \) with \( x^2 \): \[ I = \frac{1}{2} e^{x^2} (x^2 - 1) + C \] 6. **Comparing with Given Form:** We have: \[ I = e^{x^2} f(x) + C \] Thus, comparing: \[ f(x) = \frac{1}{2} (x^2 - 1) \] 7. **Finding \( f(1) \):** Check \( f(1) \): \[ f(1) = \frac{1}{2} (1^2 - 1) = \frac{1}{2} (0) = 0 \] This satisfies the condition \( f(1) = 0 \). 8. **Finding \( f(2) \):** Now calculate \( f(2) \): \[ f(2) = \frac{1}{2} (2^2 - 1) = \frac{1}{2} (4 - 1) = \frac{1}{2} (3) = \frac{3}{2} \] ### Final Answer: \[ f(2) = \frac{3}{2} \]
Promotional Banner

Similar Questions

Explore conceptually related problems

If B=int(1)/(e^(x)+1)dx=-f(x)+C , where C is the constant of integration and e^(f(0))=2 , then the value of e^(f(-1)) is

If the integral int(lnx)/(x^(3))dx=(f(x))/(4x^(2))+C , where f(e )=-3 and C is the constant of integration, then the value of f(e^(2)) is equal to

If the integral I=int(x^(5))/(sqrt(1+x^(3)))dx =Ksqrt(x^(3)+1)(x^(3)-2)+C , (where, C is the constant of integration), then the value of 9K is equal to

If the integral int(x^(4)+x^(2)+1)/(x^(2)-x+1)dx=f(x)+C, (where C is the constant of integration and x in R ), then the minimum value of f'(x) is

The integral I=int[xe^(x^(2))(sinx^(2)+cosx^(2))]dx =f(x)+c , (where, c is the constant of integration). Then, f(x) can be

If intf(x)dx=3[f(x)]^(2)+c (where c is the constant of integration) and f(1)=(1)/(6) , then f(6pi) is equal to

The integral I=int2^((2^(x)+x))dx=lambda. (2^(2^(x)))+C (where, C is the constant of integration). Then the value of sqrtlambda is equal to

If I=int(x^(3)-1)/(x^(5)+x^(4)+x+1)dx=(1)/(4)ln(f(x))-ln(g(x))+c (where, c is the constant of integration) and f(0)=g(0)=1 ,then the value of f(1).g(1) is equal to

If the integral I=int(dx)/(x^(10)+x)=lambda ln ((x^(9))/(1+x^(mu)))+C , (where, C is the constant of integration) then the value of (1)/(lambda)+mu is equal to

The integral I=int((1)/(x.secx)-ln(x^(sinx))dx simplifies to (where, c is the constant of integration)