Home
Class 12
MATHS
Let f(x)={{:((2^((1)/(x))-1)/(2^((1)/(x)...

Let `f(x)={{:((2^((1)/(x))-1)/(2^((1)/(x))+1),":",xne0),(0,":,x=0):}`, then `f(x)` is

A

continuous and differentiable at x = 0

B

continuous but not differentiable at x = 0

C

differentiable but not continuous at x = 0

D

none of these

Text Solution

AI Generated Solution

The correct Answer is:
To determine the properties of the function \( f(x) \) defined as: \[ f(x) = \begin{cases} \frac{2^{\frac{1}{x}} - 1}{2^{\frac{1}{x}} + 1} & \text{if } x \neq 0 \\ 0 & \text{if } x = 0 \end{cases} \] we need to check whether \( f(x) \) is continuous and differentiable at \( x = 0 \). ### Step 1: Check Continuity at \( x = 0 \) To check continuity at \( x = 0 \), we need to evaluate the left-hand limit (LHL) and the right-hand limit (RHL) as \( x \) approaches 0, and compare these with \( f(0) \). #### Left-Hand Limit (LHL) \[ \text{LHL} = \lim_{h \to 0^-} f(0 - h) = \lim_{h \to 0^-} f(-h) = \lim_{h \to 0^-} \frac{2^{\frac{1}{-h}} - 1}{2^{\frac{1}{-h}} + 1} \] As \( h \to 0^- \), \( -h \to 0^+ \) and \( \frac{1}{-h} \to -\infty \): \[ = \lim_{h \to 0^-} \frac{0 - 1}{0 + 1} = \frac{-1}{1} = -1 \] #### Right-Hand Limit (RHL) \[ \text{RHL} = \lim_{h \to 0^+} f(0 + h) = \lim_{h \to 0^+} f(h) = \lim_{h \to 0^+} \frac{2^{\frac{1}{h}} - 1}{2^{\frac{1}{h}} + 1} \] As \( h \to 0^+ \), \( \frac{1}{h} \to +\infty \): \[ = \lim_{h \to 0^+} \frac{\infty - 1}{\infty + 1} = \frac{\infty}{\infty} \text{ (indeterminate form)} \] To resolve this, we can factor \( 2^{\frac{1}{h}} \) out of the numerator and denominator: \[ = \lim_{h \to 0^+} \frac{2^{\frac{1}{h}}(1 - \frac{1}{2^{\frac{1}{h}}})}{2^{\frac{1}{h}}(1 + \frac{1}{2^{\frac{1}{h}}})} = \lim_{h \to 0^+} \frac{1 - 0}{1 + 0} = 1 \] ### Step 2: Compare Limits with \( f(0) \) Now we compare the limits with \( f(0) \): \[ f(0) = 0 \] Since: \[ \text{LHL} = -1 \quad \text{and} \quad \text{RHL} = 1 \quad \text{and} \quad f(0) = 0 \] The left-hand limit and right-hand limit are not equal, thus: \[ \text{LHL} \neq \text{RHL} \quad \Rightarrow \quad f \text{ is not continuous at } x = 0 \] ### Step 3: Conclusion on Differentiability Since \( f \) is not continuous at \( x = 0 \), it cannot be differentiable at that point. ### Final Answer Thus, the function \( f(x) \) is neither continuous nor differentiable at \( x = 0 \).
Promotional Banner

Similar Questions

Explore conceptually related problems

If f(x)={{:((e^((2)/(x))-1)/(e^((2)/(x))+1),:,x ne 0),(0,:,x=0):} , then f(x) is

If f(x)={{:((e^((1+(1)/(x)))-a)/(e^((1)/(x))+1),":",xne0),(e,":",x=0):} (where a and b are arbitrary constants) is continuous at x = 0, then the value of a^(2) is equal to (use e = 2.7)

Let f (x) = {{:(e ^((1)/(x ^(2)))sin ""(1)/(x), x ne0),(lamda, x =(0):}, then f '(0)

If f(x) = {{:(1/(1+e^(1//x)), x ne 0),(0,x=0):} then f(x) is

f(x) ={{:((x)/(2x^(2)+|x|),xne0),( 1, x=0):} then f(x) is

If f(x)= {{:(,(1)/(x)-(2)/(e^(2x)-1),x ne 0),(,1,x=0):}

Let f(x)= {(((xsinx+2cos2x)/(2))^((1)/(x^(2))),,,,xne0),(e^(-K//2),,,,x=0):} if f(x) is continous at x=0 then the value of k is (a) 1 (b) 2 (c) 3 (d) 4

If f(x)={(xsin,((1)/(x)),xne0),(0,,x=0):} Then, lim_(xrarr0) f(x)

If f(x)={{:((sqrt(1-cos2x))/(sqrt(2)x)",",xne0),(k",",x=0):} then which value of k will make function f continuous at x=0 ?

Let f(x)={{:(x^(n)sin(1//x^(2))","xne0),(0", "x=0):},(ninI). Then