Home
Class 12
MATHS
If the straight lines x+2y=3, 2x+3y=5 an...

If the straight lines `x+2y=3, 2x+3y=5 and k^(2)x+ky=-1` represent a triangle which is right - angled, then the value of k are `k_(1) and k_(2)`. The value of `|(k_(1)+k_(2))/(k_(1)-k_(2))|` is

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the values of \( k \) such that the lines represented by the equations \( x + 2y = 3 \), \( 2x + 3y = 5 \), and \( k^2 x + ky = -1 \) form a right-angled triangle. We will then compute the expression \( \left| \frac{k_1 + k_2}{k_1 - k_2} \right| \). ### Step 1: Write the equations in slope-intercept form 1. **Equation 1**: \( x + 2y = 3 \) - Rearranging gives \( 2y = -x + 3 \) or \( y = -\frac{1}{2}x + \frac{3}{2} \) - Slope \( m_1 = -\frac{1}{2} \) 2. **Equation 2**: \( 2x + 3y = 5 \) - Rearranging gives \( 3y = -2x + 5 \) or \( y = -\frac{2}{3}x + \frac{5}{3} \) - Slope \( m_2 = -\frac{2}{3} \) 3. **Equation 3**: \( k^2 x + ky = -1 \) - Rearranging gives \( ky = -k^2 x - 1 \) or \( y = -\frac{k^2}{k}x - \frac{1}{k} \) - Slope \( m_3 = -k \) ### Step 2: Determine conditions for right angles For the triangle to be right-angled, the product of the slopes of two lines must equal -1. We will check the combinations of the slopes: 1. **Condition 1**: \( m_1 \cdot m_3 = -1 \) \[ -\frac{1}{2} \cdot (-k) = -1 \implies \frac{k}{2} = -1 \implies k = -2 \] 2. **Condition 2**: \( m_2 \cdot m_3 = -1 \) \[ -\frac{2}{3} \cdot (-k) = -1 \implies \frac{2k}{3} = -1 \implies k = -\frac{3}{2} \] ### Step 3: Values of \( k \) We have found two values: - \( k_1 = -2 \) - \( k_2 = -\frac{3}{2} \) ### Step 4: Calculate \( \left| \frac{k_1 + k_2}{k_1 - k_2} \right| \) 1. **Calculate \( k_1 + k_2 \)**: \[ k_1 + k_2 = -2 - \frac{3}{2} = -\frac{4}{2} - \frac{3}{2} = -\frac{7}{2} \] 2. **Calculate \( k_1 - k_2 \)**: \[ k_1 - k_2 = -2 + \frac{3}{2} = -\frac{4}{2} + \frac{3}{2} = -\frac{1}{2} \] 3. **Calculate \( \frac{k_1 + k_2}{k_1 - k_2} \)**: \[ \frac{k_1 + k_2}{k_1 - k_2} = \frac{-\frac{7}{2}}{-\frac{1}{2}} = \frac{7}{1} = 7 \] 4. **Final result**: \[ \left| \frac{k_1 + k_2}{k_1 - k_2} \right| = |7| = 7 \] ### Final Answer The value of \( \left| \frac{k_1 + k_2}{k_1 - k_2} \right| \) is \( \boxed{7} \).
Promotional Banner

Similar Questions

Explore conceptually related problems

If the equation 3x^(2)+xy-y^(2)-3x+6y+k=0 represents a pair of straight lines, then the value of k, is

If the lines (x-1)/(-3)=(y-2)/(2k)=(z-3)/(-2) and (x-1)/(3k)=(y-5)/1=(z-6)/(-5) are at right angle, then find the value of k .

If the lines given by 3x+2ky =2 and 2x+5y =1 are parallel, then the value of k is

If the lines given by 3x+2ky =2 and 2x+5y =1 are parallel, then the value of k is

If the lines (x-1)/(-3)=(y-2)/(2k)=(z-3)/(2)a n d(x-1)/(3k)=(y-5)/1=(z-6)/(-5) are at right angel, then find the value of kdot

The line x/k=y/2=z/-12 makes an isosceles triangle with the planes 2x+y+3z-1=0 and x+2y-3z-1=0 then the value of k is-

If the circle 2x^(2) + 2y^(2) = 5x touches the line 3x + 4y = k , then the values of k are

If the straight lines (x-1)/k=(y-2)/2=(z-3)/3 and (x-2)/3=(y-3)/k=(z-1)/2 intersect at a point, then the integer k is equal to (1) -5 (2) 5 (3) 2 (4) -2

Find the value of k, if 2x +1 is a factor of (3k+2)x^3 + (k-1).

If the straight lines (x-1)/(k)=(y-2)/(2)=(z-3)/(3) and (x-2)/(3)=(y-3)/(k)=(z-1)/(2) intersect at a point, then the integer k is equal to