To solve the problem, we need to find the distance that a spherical ball moves in 1 second after attaining terminal velocity when dropped in a viscous liquid. Here’s a step-by-step solution:
### Step 1: Identify the given data
- Diameter of the ball, \( d = 1 \, \text{cm} = 0.01 \, \text{m} \)
- Radius of the ball, \( r = \frac{d}{2} = \frac{0.01}{2} = 0.005 \, \text{m} \)
- Density of the ball, \( \rho_{\text{ball}} = 5 \times 10^3 \, \text{kg/m}^3 \)
- Density of the liquid, \( \rho_{\text{liquid}} = 3 \times 10^3 \, \text{kg/m}^3 \)
- Coefficient of viscosity, \( \eta = 0.1 \, \text{Ns/m}^2 \)
- Acceleration due to gravity, \( g = 10 \, \text{m/s}^2 \)
### Step 2: Calculate the terminal velocity
The formula for terminal velocity \( v_t \) of a sphere falling through a viscous fluid is given by:
\[
v_t = \frac{2}{9} \cdot \frac{g r^2 (\rho_{\text{ball}} - \rho_{\text{liquid}})}{\eta}
\]
Substituting the known values into the formula:
\[
v_t = \frac{2}{9} \cdot \frac{10 \cdot (0.005)^2 \cdot (5 \times 10^3 - 3 \times 10^3)}{0.1}
\]
### Step 3: Simplify the expression
Calculating \( \rho_{\text{ball}} - \rho_{\text{liquid}} \):
\[
\rho_{\text{ball}} - \rho_{\text{liquid}} = 5 \times 10^3 - 3 \times 10^3 = 2 \times 10^3 \, \text{kg/m}^3
\]
Now substituting this back into the terminal velocity equation:
\[
v_t = \frac{2}{9} \cdot \frac{10 \cdot (0.005)^2 \cdot (2 \times 10^3)}{0.1}
\]
Calculating \( (0.005)^2 = 2.5 \times 10^{-5} \):
\[
v_t = \frac{2}{9} \cdot \frac{10 \cdot 2.5 \times 10^{-5} \cdot 2 \times 10^3}{0.1}
\]
Calculating the numerator:
\[
10 \cdot 2.5 \times 10^{-5} \cdot 2 \times 10^3 = 5 \times 10^{-2}
\]
Now substituting this back:
\[
v_t = \frac{2}{9} \cdot \frac{5 \times 10^{-2}}{0.1}
\]
This simplifies to:
\[
v_t = \frac{2}{9} \cdot 0.5 = \frac{1}{9} \, \text{m/s}
\]
### Step 4: Calculate the distance moved in 1 second
After attaining terminal velocity, the distance \( d \) moved in 1 second is given by:
\[
d = v_t \cdot t
\]
Substituting \( t = 1 \, \text{s} \):
\[
d = \frac{1}{9} \cdot 1 = \frac{10}{9} \, \text{m}
\]
### Final Answer
The distance that the ball moves in 1 second after attaining terminal velocity is:
\[
\frac{10}{9} \, \text{m}
\]