Home
Class 12
MATHS
The value of the integral int(-4)^(4)e^(...

The value of the integral `int_(-4)^(4)e^(|x|){x}dx` is equal to (where `{.}` denotes the fractional part function)

A

`e^(4)`

B

`e^(4)+1`

C

`(e^(4)-1)`

D

`e^(2)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( \int_{-4}^{4} e^{|x|} \{x\} \, dx \), where \( \{x\} \) denotes the fractional part of \( x \), we can use the property of definite integrals that states: \[ \int_{-a}^{a} f(x) \, dx = \int_{0}^{a} (f(x) + f(-x)) \, dx \] ### Step 1: Split the Integral We can express the integral as: \[ \int_{-4}^{4} e^{|x|} \{x\} \, dx = \int_{0}^{4} e^{x} \{x\} \, dx + \int_{-4}^{0} e^{-x} \{-x\} \, dx \] ### Step 2: Simplify the Second Integral For \( x < 0 \), we have \( |x| = -x \) and \( \{-x\} = 1 - \{x\} \). Therefore, \[ \int_{-4}^{0} e^{-x} \{-x\} \, dx = \int_{-4}^{0} e^{-x} (1 - \{x\}) \, dx \] ### Step 3: Combine the Integrals Now we can combine the two parts: \[ \int_{-4}^{4} e^{|x|} \{x\} \, dx = \int_{0}^{4} e^{x} \{x\} \, dx + \int_{-4}^{0} e^{-x} (1 - \{x\}) \, dx \] ### Step 4: Evaluate the Integral from 0 to 4 For \( x \) in the range \( [0, 4] \), \( \{x\} = x - \lfloor x \rfloor \). Since \( x \) is between 0 and 4, we can break it down into intervals: - From 0 to 1: \( \{x\} = x \) - From 1 to 2: \( \{x\} = x - 1 \) - From 2 to 3: \( \{x\} = x - 2 \) - From 3 to 4: \( \{x\} = x - 3 \) Thus, we can write: \[ \int_{0}^{4} e^{x} \{x\} \, dx = \int_{0}^{1} e^{x} x \, dx + \int_{1}^{2} e^{x} (x - 1) \, dx + \int_{2}^{3} e^{x} (x - 2) \, dx + \int_{3}^{4} e^{x} (x - 3) \, dx \] ### Step 5: Evaluate Each Integral 1. **From 0 to 1**: \[ \int_{0}^{1} e^{x} x \, dx \] Use integration by parts. 2. **From 1 to 2**: \[ \int_{1}^{2} e^{x} (x - 1) \, dx \] Again, use integration by parts. 3. **From 2 to 3**: \[ \int_{2}^{3} e^{x} (x - 2) \, dx \] Use integration by parts. 4. **From 3 to 4**: \[ \int_{3}^{4} e^{x} (x - 3) \, dx \] Use integration by parts. ### Step 6: Combine Results After evaluating all the integrals, combine the results from both parts of the integral. ### Final Step: Calculate the Result The final result will yield a numerical value, which can be simplified to find the fractional part.
Promotional Banner

Similar Questions

Explore conceptually related problems

int_(0)^(4) {sqrt(x)} is equal to, where {x} denotes the fraction part of x.

The value of the integral int_(-a)^(a)(e^(x))/(1+e^(x))dx is

The value of the integral int_(0)^(4)(x^(2))/(x^(2)-4x+8)dx is equal to

The value of integral int_(-2)^(4) x[x]dx is

Evaluate int_(-3)^(5) e^({x})dx , where {.} denotes the fractional part functions.

The value of integral int_(2)^(4)(dx)/(x) is :-

The value of the definite integral int_(19)^37((x)^2+3(sin2pix))dx where (x) denotes the fractional part functicn

The value of the integral I=int_(0)^(pi)[|sinx|+|cosx|]dx, (where [.] denotes the greatest integer function) is equal to

The value of the integral I=int_(0)^( pi/4)[sin x+cos x](cos x-sin x)dx is equal to (where,[.] denotes the greatest integer function)

The value of int_0^([x]) 2^x/(2^([x])) dx is equal to (where, [.] denotes the greatest integer function)