Home
Class 12
MATHS
Let f(x)=|(4x+1,-cosx,-sinx),(6,8sinalph...

Let `f(x)=|(4x+1,-cosx,-sinx),(6,8sinalpha,0),(12sinalpha, 16sin^(2)alpha,1+4sinalpha)|` and `f(0)=0`. If the sum of all possible values of `alpha` is `kpi` for `alpha in [0, 2pi]`, then the value of k is equal to

A

2

B

4

C

6

D

8

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem step by step, we start with the function given: \[ f(x) = \begin{vmatrix} 4x + 1 & -\cos x & -\sin x \\ 6 & 8 \sin \alpha & 0 \\ 12 \sin \alpha & 16 \sin^2 \alpha & 1 + 4 \sin \alpha \end{vmatrix} \] We know that \( f(0) = 0 \). Let's evaluate \( f(0) \): 1. **Substituting \( x = 0 \)**: \[ f(0) = \begin{vmatrix} 4(0) + 1 & -\cos(0) & -\sin(0) \\ 6 & 8 \sin \alpha & 0 \\ 12 \sin \alpha & 16 \sin^2 \alpha & 1 + 4 \sin \alpha \end{vmatrix} \] This simplifies to: \[ f(0) = \begin{vmatrix} 1 & -1 & 0 \\ 6 & 8 \sin \alpha & 0 \\ 12 \sin \alpha & 16 \sin^2 \alpha & 1 + 4 \sin \alpha \end{vmatrix} \] 2. **Calculating the determinant**: We can expand the determinant using the first row: \[ f(0) = 1 \cdot \begin{vmatrix} 8 \sin \alpha & 0 \\ 16 \sin^2 \alpha & 1 + 4 \sin \alpha \end{vmatrix} - (-1) \cdot \begin{vmatrix} 6 & 0 \\ 12 \sin \alpha & 1 + 4 \sin \alpha \end{vmatrix} \] The first determinant is: \[ \begin{vmatrix} 8 \sin \alpha & 0 \\ 16 \sin^2 \alpha & 1 + 4 \sin \alpha \end{vmatrix} = 8 \sin \alpha (1 + 4 \sin \alpha) - 0 = 8 \sin \alpha (1 + 4 \sin \alpha) \] The second determinant is: \[ \begin{vmatrix} 6 & 0 \\ 12 \sin \alpha & 1 + 4 \sin \alpha \end{vmatrix} = 6(1 + 4 \sin \alpha) - 0 = 6(1 + 4 \sin \alpha) \] 3. **Putting it all together**: Thus, we have: \[ f(0) = 8 \sin \alpha (1 + 4 \sin \alpha) + 6(1 + 4 \sin \alpha) \] Factor out \( (1 + 4 \sin \alpha) \): \[ f(0) = (1 + 4 \sin \alpha)(8 \sin \alpha + 6) \] Setting \( f(0) = 0 \): \[ (1 + 4 \sin \alpha)(8 \sin \alpha + 6) = 0 \] 4. **Finding solutions**: This gives us two equations: - \( 1 + 4 \sin \alpha = 0 \) which leads to \( \sin \alpha = -\frac{1}{4} \) - \( 8 \sin \alpha + 6 = 0 \) which leads to \( \sin \alpha = -\frac{3}{4} \) 5. **Finding values of \( \alpha \)**: For \( \sin \alpha = -\frac{1}{4} \): - Possible values in the interval \( [0, 2\pi] \) are: \[ \alpha = \arcsin\left(-\frac{1}{4}\right) + 2\pi \quad \text{and} \quad \alpha = \pi - \arcsin\left(-\frac{1}{4}\right) + \pi \] For \( \sin \alpha = -\frac{3}{4} \): - Possible values in the interval \( [0, 2\pi] \) are: \[ \alpha = \arcsin\left(-\frac{3}{4}\right) + 2\pi \quad \text{and} \quad \alpha = \pi - \arcsin\left(-\frac{3}{4}\right) + \pi \] 6. **Calculating the sum of all possible values of \( \alpha \)**: The sum of all possible values of \( \alpha \) can be calculated as: \[ \text{Sum} = \left(\pi + \arcsin\left(-\frac{1}{4}\right) + \pi + 2\pi - \arcsin\left(-\frac{1}{4}\right)\right) + \left(\pi + \arcsin\left(-\frac{3}{4}\right) + \pi + 2\pi - \arcsin\left(-\frac{3}{4}\right)\right) \] Simplifying gives: \[ = 6\pi \] 7. **Final result**: Since the sum of all possible values of \( \alpha \) is \( k\pi \), we have \( k = 6 \).
Promotional Banner

Similar Questions

Explore conceptually related problems

Let A(alpha)=[(cos alpha, 0,sin alpha),(0,1,0),(sin alpha, 0, cos alpha)] and [(x,y,z)]=[(0,1,0)] . If the system of equations has infinite solutions and sum of all the possible value of alpha in [0, 2pi] is kpi , then the value of k is equal to

Let A_(alpha)=[(cosalpha, -sinalpha,0),(sinalpha, cosalpha, 0),(0,0,1)] , then :

If 0 lt alpha lt (pi)/(16) and (1+tan alpha)(1+tan4alpha)=2 , then the value of alpha is equal to

If sin alpha=-3/6, alpha in [0,2pi] then the possible values of cos (alpha/2) , is/are

Prove that sinalpha*sin(60-alpha)sin(60+alpha) = 1/4*sin3alpha

The sum of the roots of the equation |sqrt3cos x-sinx|=2" in "[0, 4pi] is kpi , then the value of 6k is

If sinalpha, sin^2alpha, 1 , sin^4alpha and sin^6alpha are in A.P., where -pi < alpha < pi, then alpha lies in the interval

If sinalpha=1/2 and cosbeta=1/2 , then the value of (alpha+beta) is

int secx/(sqrt(sin(2x+alpha)+sinalpha))dx

if (1+tan alpha )(1+tan4 alpha ) =2 where alpha in (0 , pi/16 ) then alpha equal to