Home
Class 12
MATHS
The value of lim(xrarr0)(ln(2-cos15x))/(...

The value of `lim_(xrarr0)(ln(2-cos15x))/(ln^(2)(sin3x+1))` is equal to

Text Solution

AI Generated Solution

The correct Answer is:
To solve the limit \[ \lim_{x \to 0} \frac{\ln(2 - \cos(15x))}{\ln^2(\sin(3x) + 1)}, \] we will follow these steps: ### Step 1: Simplify the numerator We can use the fact that as \( x \to 0 \), \( \cos(15x) \to 1 \). Thus, we can rewrite the numerator: \[ \ln(2 - \cos(15x)) = \ln(2(1 - \frac{\cos(15x)}{2})). \] Using the Taylor series expansion for \( \cos(15x) \) around \( x = 0 \): \[ \cos(15x) \approx 1 - \frac{(15x)^2}{2} = 1 - \frac{225x^2}{2}. \] So, \[ 2 - \cos(15x) \approx 2 - \left(1 - \frac{225x^2}{2}\right) = 1 + \frac{225x^2}{2}. \] Thus, \[ \ln(2 - \cos(15x)) \approx \ln\left(1 + \frac{225x^2}{2}\right). \] ### Step 2: Apply the logarithmic limit Using the limit property \( \lim_{x \to 0} \frac{\ln(1 + x)}{x} = 1 \), we can express: \[ \ln\left(1 + \frac{225x^2}{2}\right) \approx \frac{225x^2}{2} \text{ as } x \to 0. \] ### Step 3: Simplify the denominator Now, consider the denominator: \[ \ln^2(\sin(3x) + 1). \] As \( x \to 0 \), \( \sin(3x) \approx 3x \), so: \[ \sin(3x) + 1 \approx 3x + 1. \] Thus, \[ \ln(\sin(3x) + 1) \approx \ln(1 + 3x) \approx 3x \text{ as } x \to 0. \] So, \[ \ln^2(\sin(3x) + 1) \approx (3x)^2 = 9x^2. \] ### Step 4: Substitute back into the limit Now, substituting back into the limit: \[ \lim_{x \to 0} \frac{\frac{225x^2}{2}}{(9x^2)} = \lim_{x \to 0} \frac{225}{2 \cdot 9} = \frac{225}{18} = 12.5. \] ### Final Answer Thus, the value of the limit is: \[ \boxed{12.5}. \]
Promotional Banner

Similar Questions

Explore conceptually related problems

The value of lim_(xrarr0)(ln(10-9cos2x))/(ln^(2)(sin3x+1)) is equal to

The value of lim_(xrarr0)(9ln (2-cos 25x))/(5ln^(2)(sin 3x+1)) is equal to

lim_(xrarr0)((1-cos x)/x^2)

The value of lim_(xrarr0)(e^(x)-cos2x-x)/(x^2) , is

The value fo lim_(xrarr0)(1-cos^(4)x)/((sin^(2)xcos x)) is equal to

The value of lim_(xrarr0)(1-cos^(3)x)/(sin^(2)xcos x) is equal to

The value of lim_(xrarr0)(1-cos^(3)x)/(xsinxcosx)

The value of lim_(xrarr0)(((1-cos4x)(5+cosx))/(xtan5x)) is equal to

The value of lim_(xrarr2pi)(1-(secx)^(secx))/(ln(secx)) is equal to

The value of lim_(xrarr0) (x^2sin((1)/(x)))/(sinx) , is