Home
Class 12
MATHS
The value of lim(nrarroo)(1^(2)-2^(2)+3^...

The value of `lim_(nrarroo)(1^(2)-2^(2)+3^(2)-4^(2)+5^(2)….+(2n+1)^(2))/(n^(2))` is equal to

A

2

B

4

C

6

D

8

Text Solution

AI Generated Solution

The correct Answer is:
To solve the limit \[ \lim_{n \to \infty} \frac{1^2 - 2^2 + 3^2 - 4^2 + 5^2 - \ldots + (2n+1)^2}{n^2}, \] we will break down the expression step by step. ### Step 1: Rewrite the numerator The numerator consists of alternating squares. We can group the terms in pairs: \[ 1^2 - 2^2 + 3^2 - 4^2 + 5^2 - 6^2 + \ldots + (2n+1)^2. \] This can be rewritten as: \[ (1^2 - 2^2) + (3^2 - 4^2) + (5^2 - 6^2) + \ldots + ((2n-1)^2 - (2n)^2) + (2n+1)^2. \] ### Step 2: Simplify each pair Using the difference of squares formula \(a^2 - b^2 = (a-b)(a+b)\), we can simplify each pair: \[ 1^2 - 2^2 = (1-2)(1+2) = -1 \cdot 3 = -3, \] \[ 3^2 - 4^2 = (3-4)(3+4) = -1 \cdot 7 = -7, \] \[ 5^2 - 6^2 = (5-6)(5+6) = -1 \cdot 11 = -11, \] and so on. In general, for the \(k\)-th pair \((2k-1)^2 - (2k)^2\): \[ (2k-1)^2 - (2k)^2 = -1 \cdot (4k - 1) = -(4k - 1). \] ### Step 3: Sum the pairs The last term is \((2n+1)^2\). Therefore, the total sum of the numerator can be expressed as: \[ -(3 + 7 + 11 + \ldots + (4n - 1)) + (2n + 1)^2. \] ### Step 4: Find the sum of the series The series \(3, 7, 11, \ldots, (4n - 1)\) is an arithmetic series with the first term \(3\) and the last term \((4n - 1)\). The number of terms is \(n\). The sum of an arithmetic series is given by: \[ \text{Sum} = \frac{\text{Number of terms}}{2} \times (\text{First term} + \text{Last term}) = \frac{n}{2} \times (3 + (4n - 1)) = \frac{n}{2} \times (4n + 2) = n(2n + 1). \] ### Step 5: Substitute back into the limit Now substituting back, we have: \[ \text{Numerator} = -(n(2n + 1)) + (2n + 1)^2. \] Calculating \((2n + 1)^2\): \[ (2n + 1)^2 = 4n^2 + 4n + 1. \] So the numerator becomes: \[ -(n(2n + 1)) + (4n^2 + 4n + 1) = -2n^2 - n + 4n^2 + 4n + 1 = 2n^2 + 3n + 1. \] ### Step 6: Formulate the limit Now we can write the limit as: \[ \lim_{n \to \infty} \frac{2n^2 + 3n + 1}{n^2}. \] ### Step 7: Simplify the limit Dividing each term by \(n^2\): \[ \lim_{n \to \infty} \left(2 + \frac{3}{n} + \frac{1}{n^2}\right). \] As \(n\) approaches infinity, \(\frac{3}{n}\) and \(\frac{1}{n^2}\) approach \(0\): \[ \lim_{n \to \infty} \left(2 + 0 + 0\right) = 2. \] ### Final Answer Thus, the value of the limit is: \[ \boxed{2}. \]
Promotional Banner

Similar Questions

Explore conceptually related problems

Evaluate lim_(ntooo) ((1^(2)-2^(2)+3^(2)-4^(2)+5^(2)+...n" terms"))/(n^(2)).

The value of lim_(nrarroo)Sigma_(r=1)^(n)((2r)/(n^(2)))e^((r^(2))/(n^(2))) is equal to

The value of lim_(nto oo)(1^(3)+2^(3)+3^(3)+……..+n^(3))/((n^(2)+1)^(2))

The value of lim_(ntooo)[1/(n^(2)+1^(2))+2/(n^(2)+2^(2))+………….+n/(n^(2)+n^(2))] , is

The value of lim_(nrarroo)([x]+[2^(2)x]+[3^(2)x]+…+[n^(2)x])/(1^(2)+2^(2)+3^(2)+….+n^(2)) is equal to (where [x] represents the greatest integer part of x)

The value of lim_(nrarroo)((1)/(2n)+(1)/(2n+1)+(1)/(2n+2)+…..+(1)/(4n)) is equal to

The value of lim_(nrarroo)(cos.(x)/(2)cos.(x)/(4)cos.(x)/(8)………cos.(x)/(2^(n+1))) is equal to

lim_(nrarroo) [(1)/(n)+(n^(2))/((n+1)^(3))+(n^(2))/((n+2)^(3))+...+(1)/(8n)] is equal to

The value o lim_(xtooo)(1/(n^(3)))([1^(2)x+1^(2)]+[2^(2)x+2^(2)]+…..+[n^(2)x+n^(2)]) is where [.] denotes the greatest integer function.

The value of lim_(ntooo) [(2n)/(2n^(2)-1)"cos"(n+1)/(2n-1)-(n)/(1-2n).(n)/(n^(2)+1)] is