Home
Class 12
MATHS
If [sin^(-1)x]^(2)-2[sin^(-1)x]+1le0 (wh...

If `[sin^(-1)x]^(2)-2[sin^(-1)x]+1le0` (where, [.] represents the greatest integral part of x), then

A

`x in[sin1, sin2]`

B

`x in[-sin1, sin1]`

C

`x in [sin1,1]`

D

`x in [-sin1, sin2]`

Text Solution

Verified by Experts

The correct Answer is:
C
Promotional Banner

Similar Questions

Explore conceptually related problems

If [sin^(-1)x]^(2)+[sin^(-1)x]-2 le 0 (where, [.] represents the greatest integral part of x), then the maximum value of x is

If f(x)=(x^(2)-[x^(2)])/(1+x^(2)-[x^(2)]) (where [.] represents the greatest integer part of x), then the range of f(x) is

If f(x)=(x^(3)+x+1)tan(pi[x]) (where, [x] represents the greatest integer part of x), then

Consider the function f(x)=cos^(-1)([2^(x)])+sin^(-1)([2^(x)]-1) , then (where [.] represents the greatest integer part function)

STATEMENT -1 : If [sin^(-1)x] gt [cos^(-1)x] ,where [] represents the greatest integer function, then x in [sin1,1] is and STATEMENT -2 : cos^(-1)(cosx)=x,x in [-1,1]

If f(x) =[ sin ^(-1)(sin 2x )] (where, [] denotes the greatest integer function ), then

The value of int_0^(2pi)[2 sin x] dx , where [.] represents the greatest integral functions, is

lim_(xrarr0) [(sin^(-1)x)/(tan^(-1)x)]= (where [.] denotes the greatest integer function)

Consider the function defined implicity by the equation y^(2)-2ye^(sin^(-1)x)+x^(2)-1+[x]+e^(2sin ^(-1)x)=0("where [x] denotes the greatest integer function"). The area of the region bounded by the curve and the line x=-1 is

If [sin^-1 (cos^-1(sin^-1 (tan^-1 x)))]=1 , where [*] denotes the greatest integer function, then x in