Home
Class 12
MATHS
If the variate of a distribution takes t...

If the variate of a distribution takes the values `1^(2), 2^(2), 3^(2),….n^(2)` with frequencies `n, n-1, n-2,….3,2,1` respectively, then the mean value of the distribution is

A

`(n(n+2))/(3)`

B

`(n(n+1)(n+2))/(6)`

C

`(n+2)/(3)`

D

`((n+1)(n+2))/(6)`

Text Solution

AI Generated Solution

The correct Answer is:
To find the mean value of the distribution given the variate values and their corresponding frequencies, we can follow these steps: ### Step-by-Step Solution: 1. **Identify the variate values and frequencies**: - The variate values are \(1^2, 2^2, 3^2, \ldots, n^2\). - The corresponding frequencies are \(n, n-1, n-2, \ldots, 2, 1\). 2. **Calculate the mean formula**: - The mean \( \mu \) of a distribution can be calculated using the formula: \[ \mu = \frac{\sum f_i x_i}{\sum f_i} \] where \( f_i \) is the frequency and \( x_i \) is the variate. 3. **Calculate \( \sum f_i x_i \)**: - We need to compute \( \sum f_i x_i \): \[ \sum f_i x_i = n \cdot 1^2 + (n-1) \cdot 2^2 + (n-2) \cdot 3^2 + \ldots + 1 \cdot n^2 \] - This can be expressed as: \[ \sum_{r=1}^{n} (n - r + 1) r^2 \] - Rearranging gives: \[ = \sum_{r=1}^{n} (n + 1 - r) r^2 = (n + 1) \sum_{r=1}^{n} r^2 - \sum_{r=1}^{n} r^3 \] 4. **Use summation formulas**: - The formulas for the summations are: \[ \sum_{r=1}^{n} r^2 = \frac{n(n + 1)(2n + 1)}{6} \] \[ \sum_{r=1}^{n} r^3 = \left(\frac{n(n + 1)}{2}\right)^2 \] 5. **Substitute the formulas into the mean calculation**: - Substitute the summation results into the expression for \( \sum f_i x_i \): \[ \sum f_i x_i = (n + 1) \cdot \frac{n(n + 1)(2n + 1)}{6} - \left(\frac{n(n + 1)}{2}\right)^2 \] 6. **Calculate \( \sum f_i \)**: - The total frequency \( \sum f_i \) is: \[ \sum f_i = n + (n - 1) + (n - 2) + \ldots + 2 + 1 = \frac{n(n + 1)}{2} \] 7. **Combine results to find the mean**: - Now substituting back into the mean formula: \[ \mu = \frac{(n + 1) \cdot \frac{n(n + 1)(2n + 1)}{6} - \left(\frac{n(n + 1)}{2}\right)^2}{\frac{n(n + 1)}{2}} \] - Simplifying this expression leads to: \[ \mu = \frac{(n + 1)(n + 2)}{6} \] ### Final Answer: The mean value of the distribution is: \[ \mu = \frac{(n + 1)(n + 2)}{6} \]
Promotional Banner

Similar Questions

Explore conceptually related problems

If a variable takes value 0,1,2,3,....,n with frequencies 1,C(n,1),C(n,2),C(n,3),...,C(n,n) respectively, then the arithmetic mean is

If the observation 1, 2, 3, ……….., n occur with frequency, n,(n-1), (n-2),…..,1 respectively such that the mean of observations is (13)/(3) , then n is equal to

If a variable takes the values 0, 1, 2,…,n with frequencies proporiotnal to binomial coefficient n_(C_(0)), n_(C_(1)), n_(C_(2)),….n_(C_(n)) , then mean of distribution is

If a variable takes the values 0, 1, 2,…,n with frequencies proporiotnal to binomial coefficient n_(C_(0)), n_(C_(1)), n_(C_(2)),….n_(C_(n)) , then mean of distribution is

If a variable X takes values of 0,1,2, .... n with frequencies \ \ ^n C_0,\ ^n C_1,\ ^n C_2,..... ,\ ^n C_n , then variance of distribution is

The mean of the distribution, in which the values of X are 1, 2, ..,n the frequency of each being unity is :

If a variable takes values 0, 1, 2,…,n with frequencies q^(n), (n)/(1)q^(n-1)p, (n(n-1))/(1.2)q^(n-2)p^(2),…,p^(n) where p+q = 1, then the mean is

If 1/2,1/3,n are direction cosines of a line, then the value of n is

Find the mean and variance of Binomial Distribution if p=1/2 ,n=1

If a binomial distribution has mean 2.4 and variance is 1.44, then n=