Home
Class 12
MATHS
If vectors 4vecp+vecq, 2 vecp-3vecq and ...

If vectors `4vecp+vecq, 2 vecp-3vecq and 5vecp-3vecq, 5vecp+3vecq` are a pair of mutually perpendicular vectors and if the angle between `vecp and vecq` is `theta`, then the value of `sin^(2)theta` is equal to

A

`(3)/(5)`

B

`(9)/(25)`

C

`(1)/(2500)`

D

`(2499)/(2500)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the value of \( \sin^2 \theta \) given that the vectors \( 4\vec{p} + \vec{q} \), \( 2\vec{p} - 3\vec{q} \), \( 5\vec{p} - 3\vec{q} \), and \( 5\vec{p} + 3\vec{q} \) are mutually perpendicular. ### Step 1: Set up the dot product equations Since the vectors are mutually perpendicular, we can set up the following equations based on the dot product being zero: 1. \( (4\vec{p} + \vec{q}) \cdot (2\vec{p} - 3\vec{q}) = 0 \) 2. \( (5\vec{p} - 3\vec{q}) \cdot (5\vec{p} + 3\vec{q}) = 0 \) ### Step 2: Calculate the first dot product Calculating the first dot product: \[ (4\vec{p} + \vec{q}) \cdot (2\vec{p} - 3\vec{q}) = 4\vec{p} \cdot 2\vec{p} + 4\vec{p} \cdot (-3\vec{q}) + \vec{q} \cdot 2\vec{p} + \vec{q} \cdot (-3\vec{q}) \] This simplifies to: \[ 8|\vec{p}|^2 - 12 \vec{p} \cdot \vec{q} + 2 \vec{p} \cdot \vec{q} - 3|\vec{q}|^2 = 0 \] Combining like terms gives: \[ 8|\vec{p}|^2 - 10 \vec{p} \cdot \vec{q} - 3|\vec{q}|^2 = 0 \quad \text{(Equation 1)} \] ### Step 3: Calculate the second dot product Now calculating the second dot product: \[ (5\vec{p} - 3\vec{q}) \cdot (5\vec{p} + 3\vec{q}) = 5\vec{p} \cdot 5\vec{p} + 5\vec{p} \cdot 3\vec{q} - 3\vec{q} \cdot 5\vec{p} - 3\vec{q} \cdot 3\vec{q} \] This simplifies to: \[ 25|\vec{p}|^2 - 9|\vec{q}|^2 = 0 \quad \text{(Equation 2)} \] ### Step 4: Solve the equations From Equation 2, we can express \( |\vec{p}|^2 \) in terms of \( |\vec{q}|^2 \): \[ 25|\vec{p}|^2 = 9|\vec{q}|^2 \implies |\vec{p}|^2 = \frac{9}{25}|\vec{q}|^2 \] Substituting this into Equation 1: \[ 8\left(\frac{9}{25}|\vec{q}|^2\right) - 10 \vec{p} \cdot \vec{q} - 3|\vec{q}|^2 = 0 \] This simplifies to: \[ \frac{72}{25}|\vec{q}|^2 - 10 \vec{p} \cdot \vec{q} - 3|\vec{q}|^2 = 0 \] Combining terms gives: \[ \left(\frac{72}{25} - 3\right)|\vec{q}|^2 = 10 \vec{p} \cdot \vec{q} \] Calculating \( \frac{72}{25} - 3 = \frac{72 - 75}{25} = \frac{-3}{25} \): \[ -\frac{3}{25}|\vec{q}|^2 = 10 \vec{p} \cdot \vec{q} \] ### Step 5: Find \( \cos \theta \) Now we can express \( \vec{p} \cdot \vec{q} \): \[ \vec{p} \cdot \vec{q} = -\frac{3}{250}|\vec{q}|^2 \] Using the cosine formula: \[ \cos \theta = \frac{\vec{p} \cdot \vec{q}}{|\vec{p}||\vec{q}|} \] Substituting \( |\vec{p}| = \sqrt{\frac{9}{25}}|\vec{q}| = \frac{3}{5}|\vec{q}| \): \[ \cos \theta = \frac{-\frac{3}{250}|\vec{q}|^2}{\left(\frac{3}{5}|\vec{q}|\right)|\vec{q}|} = \frac{-\frac{3}{250}|\vec{q}|^2}{\frac{3}{5}|\vec{q}|^2} = -\frac{1}{50} \] ### Step 6: Find \( \sin^2 \theta \) Using the identity \( \sin^2 \theta = 1 - \cos^2 \theta \): \[ \sin^2 \theta = 1 - \left(-\frac{1}{50}\right)^2 = 1 - \frac{1}{2500} = \frac{2499}{2500} \] Thus, the final answer is: \[ \sin^2 \theta = \frac{2499}{2500} \]
Promotional Banner

Similar Questions

Explore conceptually related problems

If the vectors 3vecP+vecq, 5vecP - 3vecq and 2 vecp+ vecq, 4 vecp - 2vecq are pairs of mutually perpendicular vectors, the find the angle between vectors vecp and vecq .

If the vectors 3 vec p + vec q ; 5 vec p - 3 vecq and 2 vec p + vec q ; 4 vec p - 2 vec q are pairs of mutually perpendicular then sin( vec p , vec q) is :

If vecP.vecQ=PQ then angle between vecP and vecQ is

The resultant of vecP and vecQ is perpendicular to vecP . What is the angle between vecP and vecQ

If |vecP + vecQ| = |vecP -vecQ| the angle between vecP and vecQ is

If vecpxxvecq=vecr and vecp.vecq=c , then vecq is

If theta is the angle between the vectors 2hati-2hatj+4hatk and 3hati+hatj+2hatk , then sin theta is equal to

if vecP +vecQ = vecP -vecQ , then

Two vectors vecP and vecQ that are perpendicular to each other if :

If vectors vecP, vecQ and vecR have magnitudes 5, 12 and 13 units and vecP + vecQ = vecR , the angle between vecQ and vecR is :