Home
Class 12
MATHS
If Sigma(r=1)^(n)t(r)=(1)/(6)n(n+1)(n+2...

If `Sigma_(r=1)^(n)t_(r)=(1)/(6)n(n+1)(n+2), AA n ge 1,` then the value of `lim_(nrarroo)Sigma_(r=1)^(n)(1)/(t_(r))` is equal to

A

2

B

3

C

`(3)/(2)`

D

6

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the limit: \[ \lim_{n \to \infty} \sum_{r=1}^{n} \frac{1}{t_r} \] where it is given that: \[ \sum_{r=1}^{n} t_r = \frac{1}{6} n(n+1)(n+2) \] ### Step 1: Find the expression for \( t_n \) From the definition of \( t_n \): \[ t_n = \sum_{r=1}^{n} t_r - \sum_{r=1}^{n-1} t_r \] Using the given formula for \( \sum_{r=1}^{n} t_r \): \[ \sum_{r=1}^{n-1} t_r = \frac{1}{6} (n-1)n(n+1) \] Now, substituting these into the equation for \( t_n \): \[ t_n = \frac{1}{6} n(n+1)(n+2) - \frac{1}{6} (n-1)n(n+1) \] ### Step 2: Simplify \( t_n \) Now we simplify \( t_n \): \[ t_n = \frac{1}{6} \left[ n(n+1)(n+2) - (n-1)n(n+1) \right] \] Expanding both terms: 1. \( n(n+1)(n+2) = n(n^2 + 3n + 2) = n^3 + 3n^2 + 2n \) 2. \( (n-1)n(n+1) = n(n^2 + n - n - 1) = n^3 - n^2 \) Subtracting these: \[ t_n = \frac{1}{6} \left[ (n^3 + 3n^2 + 2n) - (n^3 - n^2) \right] \] This simplifies to: \[ t_n = \frac{1}{6} \left[ 4n^2 + 2n \right] = \frac{2n^2 + n}{3} \] ### Step 3: Find \( \frac{1}{t_r} \) Now we find \( \frac{1}{t_r} \): \[ \frac{1}{t_r} = \frac{3}{2r^2 + r} \] ### Step 4: Find the sum \( \sum_{r=1}^{n} \frac{1}{t_r} \) We can rewrite the sum: \[ \sum_{r=1}^{n} \frac{1}{t_r} = \sum_{r=1}^{n} \frac{3}{2r^2 + r} \] ### Step 5: Analyze the limit As \( n \to \infty \), we can approximate: \[ \frac{1}{t_r} \approx \frac{3}{2r^2} \] Thus, \[ \sum_{r=1}^{n} \frac{1}{t_r} \approx \sum_{r=1}^{n} \frac{3}{2r^2} \] This sum can be approximated by the integral: \[ \sum_{r=1}^{n} \frac{1}{r^2} \approx \int_{1}^{n} \frac{1}{x^2} \, dx = 1 - \frac{1}{n} \to 1 \text{ as } n \to \infty \] Hence, \[ \sum_{r=1}^{n} \frac{3}{2r^2} \approx \frac{3}{2} \cdot 1 = \frac{3}{2} \] ### Step 6: Final limit Thus, the limit becomes: \[ \lim_{n \to \infty} \sum_{r=1}^{n} \frac{1}{t_r} = \frac{3}{2} \] ### Conclusion The final answer is: \[ \boxed{3} \]
Promotional Banner

Similar Questions

Explore conceptually related problems

The value of I=lim_(nrarroo)Sigma_(r=1)^(n)(r)/(n^(2)+n+r) is equal to

The value of lim_(nrarroo)Sigma_(r=1)^(n)(2^(r)+3^(r))/(6^(r)) is equal to

The value of lim_(nrarroo)Sigma_(r=1)^(n)((2r)/(n^(2)))e^((r^(2))/(n^(2))) is equal to

The value of lim_(xrarr1)Sigma_(r=1)^(10)=(x^(r )-1^(r ))/(2(x-1)) is equal to

The value of lim_(nto oo)(1)/(2) sum_(r-1)^(n) ((r)/(n+r)) is equal to

Sigma_(r=0)^(n)(n-r)(.^(n)C_(r))^(2) is equal to

The value of lim_(n to oo)sum_(r=1)^(n)(1)/(n) sqrt(((n+r)/(n-r))) is :

If sum_(r=1)^(n) a_(r)=(1)/(6)n(n+1)(n+2) for all nge1 , then lim_(ntooo) sum_(r=1)^(n) (1)/(a_(r)) , is

The limit L=lim_(nrarroo)Sigma_(r=1)^(n)(n)/(n^(2)+r^(2)) satisfies

The limit L=lim_(nrarroo)Sigma_(r=1)^(n)(n)/(n^(2)+r^(2)) satisfies the relation