Home
Class 12
MATHS
If (pi)/(2)lt alpha lt (3pi)/(4), then s...

If `(pi)/(2)lt alpha lt (3pi)/(4)`, then `sqrt(2tan alpha+(1)/(cos^(2)alpha))` is equal to

A

`-1+tan alpha`

B

`-1- tan alpha`

C

`1+tanalpha`

D

`1-tan alpha`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to evaluate the expression \( \sqrt{2 \tan \alpha + \frac{1}{\cos^2 \alpha}} \) given that \( \frac{\pi}{2} < \alpha < \frac{3\pi}{4} \). ### Step-by-Step Solution: 1. **Rewrite the Expression**: Start with the given expression: \[ \sqrt{2 \tan \alpha + \frac{1}{\cos^2 \alpha}} \] We know that \( \frac{1}{\cos^2 \alpha} = \sec^2 \alpha \). Therefore, we can rewrite the expression as: \[ \sqrt{2 \tan \alpha + \sec^2 \alpha} \] 2. **Use the Identity for Secant**: Recall the trigonometric identity: \[ \sec^2 \alpha = \tan^2 \alpha + 1 \] Substitute this into the expression: \[ \sqrt{2 \tan \alpha + \tan^2 \alpha + 1} \] 3. **Rearrange the Expression**: The expression inside the square root can be rearranged: \[ \sqrt{\tan^2 \alpha + 2 \tan \alpha + 1} \] Notice that this is a perfect square: \[ \sqrt{(\tan \alpha + 1)^2} \] 4. **Remove the Square Root**: Taking the square root gives: \[ |\tan \alpha + 1| \] 5. **Determine the Sign**: Since \( \frac{\pi}{2} < \alpha < \frac{3\pi}{4} \), we know that: - \( \tan \alpha < 0 \) (as tangent is negative in the second quadrant). - Specifically, \( \tan \alpha < -1 \) because at \( \alpha = \frac{3\pi}{4} \), \( \tan \alpha = -1 \). Therefore, \( \tan \alpha + 1 < 0 \). 6. **Final Expression**: Since \( \tan \alpha + 1 < 0 \), we can remove the absolute value: \[ |\tan \alpha + 1| = -(\tan \alpha + 1) = -\tan \alpha - 1 \] ### Conclusion: Thus, the final result is: \[ -\tan \alpha - 1 \]
Promotional Banner

Similar Questions

Explore conceptually related problems

If (3pi)/4 lt alpha lt pi , then sqrt(2cotalpha+1/(sin^2alpha)) is equal to (a) 1-cotalpha (b) 1+cotalpha (c) -1+cotalpha (d) -1-cotalpha

If (pi)/(2) lt theta lt (3pi)/(2) then sqrt(tan^(2)theta-sin^(2)theta) is equal to :

If (pi)/(2) lt theta lt (3pi)/(2) then sqrt(tan^(2)theta-sin^(2)theta) is equal to :

If 0 lt alpha lt beta lt (pi)/(2) then

If tan alpha =(b)/(a), a gt b gt 0 and " if " 0 lt alpha lt (pi)/(4), " then " sqrt((a+b)/(a-b))+sqrt((a-b)/(a+b)) is equal to :

If (pi)/(2)ltalphalt(2pi)/(3)andl=int_(0)^(sin2alpha)(dx)/(sqrt(4cos^(2)alpha-x^(2))) , then the value of (l+alpha)/(pi) must be__________.

If 0 lt alpha lt pi/6 , then the value of (alpha cosec alpha ) is

If 0 lt alpha lt (pi)/(3) , then prove that alpha (sec alpha) lt (2pi)/(3).

If sec alpha=13/5, (0 lt alpha lt pi/2) , then the value of (2-3cotalpha)/(4-9sqrt(sec^(2)alpha-1)) is

If n=pi/(4alpha), then tan alpha tan 2alpha tan 3 alpha ... tan(2n-1)alpha is equal to (a) 1 (b) 1/2 (c) 2 (d) 1/3