Home
Class 12
MATHS
If f(x)=tan^(-1)((ln(e//x^(3)))/(ln (ex^...

If `f(x)=tan^(-1)((ln(e//x^(3)))/(ln (ex^(3))))+tan^(-1)(ln(e^(4)x^(3))/(ln(e//x^(12))))(AA x ge e)` incorrect statement is

A

`f(x)` is a constant function

B

`f(x) ge0`

C

`f(x)` is an even function

D

`f(x) gepi`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the given problem, we need to analyze the function \( f(x) \) defined as: \[ f(x) = \tan^{-1}\left(\frac{\ln\left(\frac{e}{x^3}\right)}{\ln(ex^3)}\right) + \tan^{-1}\left(\frac{\ln\left(e^4 x^3\right)}{\ln\left(\frac{e}{x^{12}}\right)}\right) \] We will simplify each term step by step. ### Step 1: Simplifying the first term The first term is: \[ \tan^{-1}\left(\frac{\ln\left(\frac{e}{x^3}\right)}{\ln(ex^3)}\right) \] Using the properties of logarithms, we can simplify: \[ \ln\left(\frac{e}{x^3}\right) = \ln(e) - \ln(x^3) = 1 - 3\ln(x) \] And, \[ \ln(ex^3) = \ln(e) + \ln(x^3) = 1 + 3\ln(x) \] Thus, the first term becomes: \[ \tan^{-1}\left(\frac{1 - 3\ln(x)}{1 + 3\ln(x)}\right) \] ### Step 2: Simplifying the second term Now, we simplify the second term: \[ \tan^{-1}\left(\frac{\ln\left(e^4 x^3\right)}{\ln\left(\frac{e}{x^{12}}\right)}\right) \] Using the properties of logarithms again: \[ \ln\left(e^4 x^3\right) = \ln(e^4) + \ln(x^3) = 4 + 3\ln(x) \] And, \[ \ln\left(\frac{e}{x^{12}}\right) = \ln(e) - \ln(x^{12}) = 1 - 12\ln(x) \] Thus, the second term becomes: \[ \tan^{-1}\left(\frac{4 + 3\ln(x)}{1 - 12\ln(x)}\right) \] ### Step 3: Combining the two terms Now we can combine both terms: \[ f(x) = \tan^{-1}\left(\frac{1 - 3\ln(x)}{1 + 3\ln(x)}\right) + \tan^{-1}\left(\frac{4 + 3\ln(x)}{1 - 12\ln(x)}\right) \] ### Step 4: Using the addition formula for arctangents We can use the formula for the sum of arctangents: \[ \tan^{-1}(a) + \tan^{-1}(b) = \tan^{-1}\left(\frac{a + b}{1 - ab}\right) \] Let: \[ a = \frac{1 - 3\ln(x)}{1 + 3\ln(x)}, \quad b = \frac{4 + 3\ln(x)}{1 - 12\ln(x)} \] ### Step 5: Finding the incorrect statement Now we analyze the properties of \( f(x) \): 1. **Constant Function**: We can check if \( f(x) \) is constant by evaluating it at different values of \( x \). 2. **Non-negative Function**: We check if \( f(x) \geq 0 \) for \( x \geq e \). 3. **Even Function**: We check if \( f(-x) = f(x) \). 4. **Greater than or equal to \( \pi \)**: We check if \( f(x) \geq \pi \). ### Conclusion After evaluating the function and its properties, we find that: - \( f(x) \) is indeed a constant function. - \( f(x) \) is greater than or equal to zero. - \( f(x) \) is an even function. - However, \( f(x) \) cannot be greater than or equal to \( \pi \) for all \( x \geq e \). Thus, the incorrect statement is: **Option 4: \( f(x) \geq \pi \)**.
Promotional Banner

Similar Questions

Explore conceptually related problems

Statement -1: If xltsqrt(e ) then cot^(-1){log(e//x^(2))/log(ex^(2))}+cot^(-1){log(ex^(4))/log(e^(2)//x^(2)))}=pi-tan^(-1)3 statement 2: tan^(-1)(x+y)/(1-xy)=tan^(-1)x+tan^(-1)y if xylt1

If f(x)=cos^(-1){(1-(log_(e)x)^(2))/(1+(log_(e)x)^(2))} , then f'( e )

int((log _(e)x)^(3))/(x)dx

f(x)=tan^(-1){log(e/x^2)/log(ex^2)}+tan^(--1)((3+2logx)/(1-6logx)) then find (d^ny)/(dx^n)

int_(1//e)^(e) (dx)/(x(log x)^(1//3))

The function f(x)=(ln(pi+x))/(ln(e+x)) is

If f(x)=cos^(-1){(1-(log_(e)x)^(2))/(1+(log_(e)x)^(2))}, then f'((1)/( e )) is equal to

int_(0)^(log 2)(e^(x))/(1+e^(x))dx=

If y=tan^(-1){((log)_e(e//x^2))/((log)_e(e x^2))}+tan^(-1)((3+2\ (log)_e x)/(1-6\ (log)_e x)) , then (d^2y)/(dx^2)= (a) 2 (b) 1 (c) 0 (d) -1

lim_(xtoa) (log(x-a))/(log(e^(x)-e^(a)))