Home
Class 12
MATHS
If I(n)=int(0)^(2)(2dx)/((1-x^(n))), the...

If `I_(n)=int_(0)^(2)(2dx)/((1-x^(n)))`, then the value of `lim_(nrarroo)I_(n)` is equal to

A

1

B

2

C

`(1)/(2)`

D

`(1)/(3)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to evaluate the limit of the integral \[ I_n = \int_0^2 \frac{2 \, dx}{1 - x^n} \] as \( n \) approaches infinity. ### Step 1: Split the Integral We can split the integral into two parts: \[ I_n = \int_0^1 \frac{2 \, dx}{1 - x^n} + \int_1^2 \frac{2 \, dx}{1 - x^n} \] ### Step 2: Evaluate the First Integral For the first integral, as \( n \to \infty \), \( x^n \) approaches 0 for \( x \in [0, 1) \). Thus, we have: \[ \lim_{n \to \infty} \int_0^1 \frac{2 \, dx}{1 - x^n} = \int_0^1 \frac{2 \, dx}{1 - 0} = \int_0^1 2 \, dx \] Calculating this integral: \[ \int_0^1 2 \, dx = 2 \left[ x \right]_0^1 = 2(1 - 0) = 2 \] ### Step 3: Evaluate the Second Integral For the second integral, \( x \) is in the range \( [1, 2] \). As \( n \to \infty \), \( x^n \) approaches infinity for \( x > 1 \), hence \( 1 - x^n \) approaches negative infinity. Therefore, the integrand approaches 0: \[ \lim_{n \to \infty} \int_1^2 \frac{2 \, dx}{1 - x^n} = 0 \] ### Step 4: Combine the Results Now, combining both parts, we have: \[ \lim_{n \to \infty} I_n = 2 + 0 = 2 \] ### Final Result Thus, the value of \[ \lim_{n \to \infty} I_n = 2 \]
Promotional Banner

Similar Questions

Explore conceptually related problems

If f(n)=int_(0)^(2015)(e^(x))/(1+x^(n))dx , then find the value of lim_(nto oo)f(n)

Let I_(n) =int _(1) ^(e^(2))(ln x)^(n) dx (x ^(2)), then the value of 3I_(n)+nI_(n-1) equals to:

If I _(n)=int _(0)^(pi) (sin (2nx))/(sin 2x)dx, then the value of I _( n +(1)/(2)) is equal to (n in I) :

If I_(n)=(d^(n))/(dx^(n))(x^(n)lnx) , then the value of (1)/(50)(I_(7)-7I_(6)) is equal to

Consider the integral I_(n)=int_(0)^((n)/(4))(sin(2n-1)x)/(sinx)dx , then the value of I_(20)-I_(19) is

If I_n=int_0^(sqrt(3))(dx)/(1+x^n),(n=1,2,3. .), then find the value of ("lim")_(n to oo)I_ndot (a)0 (b) 1 (c) 2 (d) 1/2

If I_(n)=int_(0)^(pi)x^(n)sinxdx , then find the value of I_(5)+20I_(3) .

Let I_(n)=int_(0)^(1)x^(n)sqrt(1-x^(2))dx. Then lim_(nrarroo)(I_(n))/(I_(n-2))=

Let I_(n) = int_(0)^(1)(1-x^(3))^(n)dx, (nin N) then

Let f(x)=lim_( n to oo)(cosx)/(1+(tan^(-1)x)^(n)) . Then the value of int_(o)^(oo)f(x)dx is equal to