Home
Class 12
MATHS
The maximum value of f(x)=(sin2x)/(sinx+...

The maximum value of `f(x)=(sin2x)/(sinx+cosx)` in the interval `(0, (pi)/(2))` is

A

`sqrt2`

B

`(1)/(sqrt2)`

C

1

D

`(1)/(2)`

Text Solution

AI Generated Solution

The correct Answer is:
To find the maximum value of the function \( f(x) = \frac{\sin 2x}{\sin x + \cos x} \) in the interval \( (0, \frac{\pi}{2}) \), we will follow these steps: ### Step 1: Differentiate the Function To find the maximum value, we first need to differentiate \( f(x) \) with respect to \( x \). Using the quotient rule: \[ f'(x) = \frac{(\sin x + \cos x)(\cos 2x) - \sin 2x(\cos x - \sin x)}{(\sin x + \cos x)^2} \] ### Step 2: Set the Derivative to Zero Next, we set the numerator of \( f'(x) \) equal to zero to find critical points: \[ (\sin x + \cos x)\cos 2x - \sin 2x(\cos x - \sin x) = 0 \] ### Step 3: Simplify the Equation We can simplify the equation: \[ \sin x \cos 2x + \cos x \cos 2x - \sin 2x \cos x + \sin 2x \sin x = 0 \] ### Step 4: Use Trigonometric Identities Using the identity \( \sin 2x = 2 \sin x \cos x \), we can rewrite the equation: \[ \sin x \cos 2x + \cos x \cos 2x - 2 \sin x \cos x \cos x + 2 \sin x \cos x \sin x = 0 \] ### Step 5: Factor the Equation This can be factored to find solutions for \( x \): \[ \cos 2x(\sin x + \cos x) = 2 \sin x \cos x \] ### Step 6: Solve for Critical Points We can solve for \( x \) by finding where \( \cos 2x = 0 \) or \( \sin x + \cos x = 0 \) or \( 2 \sin x \cos x = 0 \). The critical point occurs at: \[ \sin 2x = 1 \implies 2x = \frac{\pi}{2} \implies x = \frac{\pi}{4} \] ### Step 7: Evaluate the Function at the Critical Point Now we evaluate \( f(x) \) at \( x = \frac{\pi}{4} \): \[ f\left(\frac{\pi}{4}\right) = \frac{\sin\left(\frac{\pi}{2}\right)}{\sin\left(\frac{\pi}{4}\right) + \cos\left(\frac{\pi}{4}\right)} = \frac{1}{\frac{1}{\sqrt{2}} + \frac{1}{\sqrt{2}}} = \frac{1}{\frac{2}{\sqrt{2}}} = \frac{\sqrt{2}}{2} \] ### Step 8: Check the Endpoints Since we are looking for the maximum value in the interval \( (0, \frac{\pi}{2}) \), we should also check the limits as \( x \) approaches \( 0 \) and \( \frac{\pi}{2} \): - As \( x \to 0 \), \( f(0) = 0 \). - As \( x \to \frac{\pi}{2} \), \( f\left(\frac{\pi}{2}\right) = 0 \). ### Conclusion The maximum value of \( f(x) \) in the interval \( (0, \frac{\pi}{2}) \) is: \[ \boxed{1} \]
Promotional Banner

Similar Questions

Explore conceptually related problems

The greatest value of the function f(x)=(sin2x)/(sin(x+pi/4)) on the interval (0,pi/2) \ i s

Find the maximum and minimum values of f(x)=x+sin2x in the interval [0,\ 2pi]

Find minium value of (9x^(2)sin^(2)x+4)/(2sinx.x) in the interval 0 le x le pi .

The local maximum value of f(x)=(sin^(2)x)/(sin^(2)x-sin^(2)a) (0 lt a lt pi//2) is :

The maximum value of cos^2(45^0+x)+(sinx-cosx)^2 is ______

The maximum value of cos^2(45^0+x)+(sinx-cosx)^2 is ______

The maximum value of (1+cosx)sinx in interval 0lexle pi/2 is for (A) x =pi/2 (B) x= pi/6 (C) x=0 (D) x= pi/3

Verify Rolle's theorem for the following functions in the given intervals. f(x) = sinx + cos x in the interval [0 , pi//2] .

The value of int(sinx +cosx)/(3+sin2x)dx , is

f(x) = sinx - sin2x in [0,pi]