Home
Class 12
MATHS
If veca, vecb and vecc are three vectors...

If `veca, vecb and vecc` are three vectors, such that `|veca|=2, |vecb|=3, |vecc|=4, veca. vecc=0, veca. vecb=0` and the angle between `vecb and vecc` is `(pi)/(3)`, then the value of `|veca xx (2vecb - 3 vecc)|` is equal to

A

`12sqrt3`

B

`6sqrt3`

C

`3sqrt3`

D

5

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the value of \(|\vec{a} \times (2\vec{b} - 3\vec{c})|\) given the conditions about the vectors \(\vec{a}\), \(\vec{b}\), and \(\vec{c}\). ### Step-by-step Solution: 1. **Understanding the Given Information**: - \(|\vec{a}| = 2\) - \(|\vec{b}| = 3\) - \(|\vec{c}| = 4\) - \(\vec{a} \cdot \vec{c} = 0\) (implying \(\vec{a}\) is perpendicular to \(\vec{c}\)) - \(\vec{a} \cdot \vec{b} = 0\) (implying \(\vec{a}\) is perpendicular to \(\vec{b}\)) - The angle between \(\vec{b}\) and \(\vec{c}\) is \(\frac{\pi}{3}\). 2. **Finding the Magnitude of the Cross Product**: We need to compute \(|\vec{a} \times (2\vec{b} - 3\vec{c})|\). Since \(\vec{a}\) is perpendicular to both \(\vec{b}\) and \(\vec{c}\), it is also perpendicular to any linear combination of these vectors, including \(2\vec{b} - 3\vec{c}\). Therefore, we can use the property of the cross product: \[ |\vec{a} \times (2\vec{b} - 3\vec{c})| = |\vec{a}| \cdot |2\vec{b} - 3\vec{c}| \] 3. **Calculating \(|2\vec{b} - 3\vec{c}|\)**: To find \(|2\vec{b} - 3\vec{c}|\), we use the formula for the magnitude of the difference of two vectors: \[ |2\vec{b} - 3\vec{c}| = \sqrt{|2\vec{b}|^2 + |-3\vec{c}|^2 - 2(2\vec{b}) \cdot (-3\vec{c})} \] - Calculate \(|2\vec{b}| = 2|\vec{b}| = 2 \times 3 = 6\) - Calculate \(|-3\vec{c}| = 3|\vec{c}| = 3 \times 4 = 12\) - Now, calculate the dot product \(2\vec{b} \cdot (-3\vec{c})\): \[ 2\vec{b} \cdot (-3\vec{c}) = -6(\vec{b} \cdot \vec{c}) = -6|\vec{b}||\vec{c}|\cos\left(\frac{\pi}{3}\right) \] Since \(\cos\left(\frac{\pi}{3}\right) = \frac{1}{2}\): \[ \vec{b} \cdot \vec{c} = 3 \cdot 4 \cdot \frac{1}{2} = 6 \] Therefore, \[ 2\vec{b} \cdot (-3\vec{c}) = -6 \times 6 = -36 \] 4. **Putting it all together**: Now we can substitute back into the magnitude formula: \[ |2\vec{b} - 3\vec{c}| = \sqrt{6^2 + 12^2 - (-36)} \] \[ = \sqrt{36 + 144 + 36} = \sqrt{216} = 6\sqrt{6} \] 5. **Final Calculation**: Now, substituting back into the equation for the cross product: \[ |\vec{a} \times (2\vec{b} - 3\vec{c})| = |\vec{a}| \cdot |2\vec{b} - 3\vec{c}| = 2 \cdot 6\sqrt{6} = 12\sqrt{6} \] ### Final Answer: \[ |\vec{a} \times (2\vec{b} - 3\vec{c})| = 12\sqrt{6} \]
Promotional Banner

Similar Questions

Explore conceptually related problems

if veca , vecb ,vecc are three vectors such that veca +vecb + vecc = vec0 then

If veca, vecb, vecc are unit vectors such that veca. vecb =0 = veca.vecc and the angle between vecb and vecc is pi/3 , then find the value of |veca xx vecb -veca xx vecc|

Let veca, vecb, vecc be three unit vectors and veca.vecb=veca.vecc=0 . If the angle between vecb and vecc is pi/3 then find the value of |[veca vecb vecc]|

If veca, vecb, vecc are any three vectors such that (veca+vecb).vecc=(veca-vecb)vecc=0 then (vecaxxvecb)xxvecc is

If veca , vecb and vecc are three vectors such that vecaxx vecb =vecc, vecb xx vecc= veca, vecc xx veca =vecb then prove that |veca|= |vecb|=|vecc|

If veca, vecb, vecc are vectors such that veca.vecb=0 and veca + vecb = vecc then:

If veca +vecb +vecc=0, |veca|=3,|vecb|=5, |vecc|=7 , then find the angle between veca and vecb .

If veca +vecb +vecc=0, |veca|=3,|vecb|=5, |vecc|=7 , then find the angle between veca and vecb .

If veca +vecb +vecc=0, |veca|=3,|vecb|=5, |vecc|=7 , then find the angle between veca and vecb .

If veca, vecb, vecc are the unit vectors such that veca + 2vecb + 2vecc=0 , then |veca xx vecc| is equal to: