Home
Class 12
MATHS
Let matrix A=[(x,y,-z),(1,2,3),(1,1,2)],...

Let matrix `A=[(x,y,-z),(1,2,3),(1,1,2)]`, where `x, y, z in N`. If `|adj(adj (adj(adjA)))|=4^(8).5^(16)`, then the number of such matrices A is equal to (where, `|M|` represents determinant of a matrix M)

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the number of matrices \( A \) of the form \[ A = \begin{pmatrix} x & y & -z \\ 1 & 2 & 3 \\ 1 & 1 & 2 \end{pmatrix} \] where \( x, y, z \in \mathbb{N} \) (natural numbers) and it is given that \[ |\text{adj}(\text{adj}(\text{adj}(\text{adj}(A))))| = 4^8 \cdot 5^{16}. \] ### Step 1: Understanding the adjoint and determinant relationship For a \( 3 \times 3 \) matrix \( A \), the relationship between the determinant of \( A \) and its adjoint is given by: \[ |\text{adj}(A)| = |A|^{n-1} = |A|^2 \quad \text{(since \( n = 3 \))} \] ### Step 2: Calculate the determinant of the adjoint Continuing this process, we find: \[ |\text{adj}(\text{adj}(A))| = |\text{adj}(A)|^{n-1} = |A|^2 \cdot |A|^2 = |A|^4 \] \[ |\text{adj}(\text{adj}(\text{adj}(A)))| = |\text{adj}(\text{adj}(A))|^{n-1} = |A|^4 \cdot |A|^2 = |A|^6 \] \[ |\text{adj}(\text{adj}(\text{adj}(\text{adj}(A))))| = |\text{adj}(\text{adj}(\text{adj}(A)))|^{n-1} = |A|^6 \cdot |A|^2 = |A|^8 \] ### Step 3: Set up the equation From the problem, we have: \[ |A|^8 = 4^8 \cdot 5^{16} \] ### Step 4: Simplify the right-hand side We can express \( 4^8 \) as \( (2^2)^8 = 2^{16} \), thus: \[ |A|^8 = 2^{16} \cdot 5^{16} \] Taking the eighth root of both sides gives: \[ |A| = 2^2 \cdot 5^2 = 4 \cdot 25 = 100 \] ### Step 5: Calculate the determinant of matrix \( A \) Next, we compute the determinant of matrix \( A \): \[ |A| = \begin{vmatrix} x & y & -z \\ 1 & 2 & 3 \\ 1 & 1 & 2 \end{vmatrix} \] Using the determinant formula for a \( 3 \times 3 \) matrix, we find: \[ |A| = x \begin{vmatrix} 2 & 3 \\ 1 & 2 \end{vmatrix} - y \begin{vmatrix} 1 & 3 \\ 1 & 2 \end{vmatrix} - z \begin{vmatrix} 1 & 2 \\ 1 & 1 \end{vmatrix} \] Calculating the smaller determinants: \[ \begin{vmatrix} 2 & 3 \\ 1 & 2 \end{vmatrix} = (2 \cdot 2 - 3 \cdot 1) = 4 - 3 = 1 \] \[ \begin{vmatrix} 1 & 3 \\ 1 & 2 \end{vmatrix} = (1 \cdot 2 - 3 \cdot 1) = 2 - 3 = -1 \] \[ \begin{vmatrix} 1 & 2 \\ 1 & 1 \end{vmatrix} = (1 \cdot 1 - 2 \cdot 1) = 1 - 2 = -1 \] Thus, we have: \[ |A| = x(1) - y(-1) - z(-1) = x + y + z \] ### Step 6: Set the determinant equal to 100 We set the equation: \[ x + y + z = 100 \] ### Step 7: Finding the number of solutions To find the number of natural number solutions to \( x + y + z = 100 \), we can use the stars and bars combinatorial method. The formula for the number of solutions in natural numbers is: \[ \text{Number of solutions} = \binom{n-1}{k-1} \] where \( n \) is the total (100) and \( k \) is the number of variables (3). Thus: \[ \text{Number of solutions} = \binom{100-1}{3-1} = \binom{99}{2} \] Calculating \( \binom{99}{2} \): \[ \binom{99}{2} = \frac{99 \times 98}{2} = 4851 \] ### Final Answer The number of such matrices \( A \) is equal to \( 4851 \). ---
Promotional Banner

Similar Questions

Explore conceptually related problems

Let matrix A=[{:(x,y,-z),(1,2,3),(1,1,2):}] , where x,y,z in N . If |adj(adj(adj(adjA)))|=4^(8)*5^(16) , then the number of such (x,y,z) are

Let matrix A=[[x,y,-z],[1,2,3],[1,1,2]] where x,y,zepsilonN . If det.(adj(adj.A))=2^8.(3^4) then the number of such matrices A is :

Let A=[(x,2,-3),(-1,3,-2),(2,-1,1)] be a matrix and |adj(adjA)|=(12)^(4) , then the sum of all the values of x is equal to

Let A=[a_(ij)]_(5xx5) is a matrix such that a_(ij)={(3,AA i= j),(0,Aai ne j):} . If |(adj(adjA))/(3)|=(sqrt3)^(lambda), then lambda is equal to (where, adj(M) represents the adjoint matrix of matrix M)

A, B and C are three square matrices of order 3 such that A= diag (x, y, z) , det (B)=4 and det (C)=2 , where x, y, z in I^(+) . If det (adj (adj (ABC))) =2^(16)xx3^(8)xx7^(4) , then the number of distinct possible matrices A is ________ .

If matrix A=[(2,2),(2,3)] then the value of [adj. A] equals to :

Consider the matrix A=[(x, 2y,z),(2y,z,x),(z,x,2y)] and A A^(T)=9I. If Tr(A) gt0 and xyz=(1)/(6) , then the vlaue of x^(3)+8y^(3)+z^(3) is equal to (where, Tr(A), I and A^(T) denote the trace of matrix A i.e. the sum of all the principal diagonal elements, the identity matrix of the same order of matrix A and the transpose of matrix A respectively)

Let A and B are square matrices of order 3. If |A|=2, |B|=3, |C|=4, then the value of |3( adj A)BC^(-1)| is equal to ( where, adj A represents the adjoint matrix of A)

Let A=[a_("ij")] be a matrix of order 2 where a_("ij") in {-1, 0, 1} and adj. A=-A . If det. (A)=-1 , then the number of such matrices is ______ .

If [{:( 1,2,3),(1,3,5),(1,5,12):}] then adj (adj A) is