Home
Class 12
MATHS
If veca,vecb,vecc are perpendicular to ...

If `veca,vecb,vecc ` are perpendicular to `vecb+vecc,vecc+veca and veca+vecb` respectively and if `|veca+vecb|=6,|vecb+vecc|=8 and |vecc+veca|=10,then |veca+vecb+vecc|` (A) `5sqrt(2)` (B) 50 (C) `10sqrt(2)` (D) 10

A

`5sqrt5`

B

50

C

`10sqrt2`

D

10

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the magnitude of the vector sum \(|\vec{a} + \vec{b} + \vec{c}|\) given that the vectors \(\vec{a}, \vec{b}, \vec{c}\) are perpendicular to certain combinations of each other and their magnitudes. ### Step-by-Step Solution: 1. **Understanding the Perpendicularity Conditions**: - We have the following conditions based on the problem statement: - \(\vec{a} \perp (\vec{b} + \vec{c})\) implies \(\vec{a} \cdot (\vec{b} + \vec{c}) = 0\) → \(\vec{a} \cdot \vec{b} + \vec{a} \cdot \vec{c} = 0\) (Equation 1) - \(\vec{b} \perp (\vec{c} + \vec{a})\) implies \(\vec{b} \cdot (\vec{c} + \vec{a}) = 0\) → \(\vec{b} \cdot \vec{c} + \vec{b} \cdot \vec{a} = 0\) (Equation 2) - \(\vec{c} \perp (\vec{a} + \vec{b})\) implies \(\vec{c} \cdot (\vec{a} + \vec{b}) = 0\) → \(\vec{c} \cdot \vec{a} + \vec{c} \cdot \vec{b} = 0\) (Equation 3) 2. **Using the Magnitudes**: - We are given: - \(|\vec{a} + \vec{b}| = 6\) → \((\vec{a} + \vec{b}) \cdot (\vec{a} + \vec{b}) = 36\) → \(|\vec{a}|^2 + |\vec{b}|^2 + 2\vec{a} \cdot \vec{b} = 36\) (Equation 4) - \(|\vec{b} + \vec{c}| = 8\) → \((\vec{b} + \vec{c}) \cdot (\vec{b} + \vec{c}) = 64\) → \(|\vec{b}|^2 + |\vec{c}|^2 + 2\vec{b} \cdot \vec{c} = 64\) (Equation 5) - \(|\vec{c} + \vec{a}| = 10\) → \((\vec{c} + \vec{a}) \cdot (\vec{c} + \vec{a}) = 100\) → \(|\vec{c}|^2 + |\vec{a}|^2 + 2\vec{c} \cdot \vec{a} = 100\) (Equation 6) 3. **Adding the Equations**: - We add Equations 4, 5, and 6: \[ (|\vec{a}|^2 + |\vec{b}|^2 + 2\vec{a} \cdot \vec{b}) + (|\vec{b}|^2 + |\vec{c}|^2 + 2\vec{b} \cdot \vec{c}) + (|\vec{c}|^2 + |\vec{a}|^2 + 2\vec{c} \cdot \vec{a}) = 36 + 64 + 100 \] - This simplifies to: \[ 2(|\vec{a}|^2 + |\vec{b}|^2 + |\vec{c}|^2) + 2(\vec{a} \cdot \vec{b} + \vec{b} \cdot \vec{c} + \vec{c} \cdot \vec{a}) = 200 \] - Dividing by 2 gives: \[ |\vec{a}|^2 + |\vec{b}|^2 + |\vec{c}|^2 + (\vec{a} \cdot \vec{b} + \vec{b} \cdot \vec{c} + \vec{c} \cdot \vec{a}) = 100 \quad (Equation 7) \] 4. **Substituting the Dot Products**: - From Equation 1, we know that \(\vec{a} \cdot \vec{b} + \vec{a} \cdot \vec{c} = 0\), thus \(\vec{a} \cdot \vec{b} = -\vec{a} \cdot \vec{c}\). - Similarly, from Equation 2 and Equation 3, we can express the dot products in terms of each other. - Substituting these into Equation 7 leads to: \[ |\vec{a}|^2 + |\vec{b}|^2 + |\vec{c}|^2 = 100 \] 5. **Finding \(|\vec{a} + \vec{b} + \vec{c}|\)**: - Now, we can find \(|\vec{a} + \vec{b} + \vec{c}|\): \[ |\vec{a} + \vec{b} + \vec{c}|^2 = |\vec{a}|^2 + |\vec{b}|^2 + |\vec{c}|^2 + 2(\vec{a} \cdot \vec{b} + \vec{b} \cdot \vec{c} + \vec{c} \cdot \vec{a}) \] - From the previous equations, we know that the dot product terms sum to zero: \[ |\vec{a} + \vec{b} + \vec{c}|^2 = 100 \] - Thus, \(|\vec{a} + \vec{b} + \vec{c}| = \sqrt{100} = 10\). ### Final Answer: \[ |\vec{a} + \vec{b} + \vec{c}| = 10 \]
Promotional Banner

Similar Questions

Explore conceptually related problems

[ veca + vecb vecb + vecc vecc + veca ]=[ veca vecb vecc ] , then

Prove that [ veca+ vecb , vecb+ vecc , vecc+ veca]=2[ veca , vecb , vecc] .

If veca, vecb, vecc are vectors such that veca.vecb=0 and veca + vecb = vecc then:

Let vec a, vec b, vec c are three vectors such that veca .veca=vecb . vecb = vecc . vecc = 3 and |veca-vecb|^2+|vecb-vecc|^2+|vecc-veca|^2=27, then

The value of [(veca-vecb, vecb-vecc, vecc-veca)] , where |veca|=1, |vecb|=5, |vecc|=3 , is

If veca, vecb and vecc are vectors such that |veca|=3,|vecb|=4 and |vecc|=5 and (veca+vecb) is perpendicular to vecc,(vecb+vecc) is perpendicular to veca and (vecc+veca) is perpendicular to vecb then |veca+vecb+vecc|= (A) 4sqrt(3) (B) 5sqrt(2) (C) 2 (D) 12

If veca + 2 vecb + 3 vecc = vec0 " then " veca xx vecb + vecb xx vecc + vecc xx veca=

If veca,vecb and vecc are non coplaner vectors such that vecbxxvecc=veca , veccxxveca=vecb and vecaxxvecb=vecc then |veca+vecb+vecc| =

If veca , vecb and vecc are three vectors such that vecaxx vecb =vecc, vecb xx vecc= veca, vecc xx veca =vecb then prove that |veca|= |vecb|=|vecc|

if veca xx vecb = vecc ,vecb xx vecc = veca , " where " vecc ne vec0 then (a) |veca|= |vecc| (b) |veca|= |vecb| (c) |vecb|=1 (d) |veca|=|vecb|= |vecc|=1