Home
Class 12
MATHS
If 0ltAltB ltpi, sin A+sinB=sqrt((3)/(2)...

If `0ltAltB ltpi, sin A+sinB=sqrt((3)/(2)) and cos A+cosB=(1)/(sqrt2),` then A =

A

`15^(@)`

B

`30^(@)`

C

`45^(@)`

D

`22(1^(@))/(2)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the value of angle \( A \) given the equations involving sine and cosine of angles \( A \) and \( B \). ### Step-by-Step Solution: 1. **Given Equations**: We have: \[ \sin A + \sin B = \sqrt{\frac{3}{2}} \quad \text{(1)} \] \[ \cos A + \cos B = \frac{1}{\sqrt{2}} \quad \text{(2)} \] 2. **Using Trigonometric Identities**: We can express the sums of sine and cosine using the identities: \[ \sin A + \sin B = 2 \sin\left(\frac{A+B}{2}\right) \cos\left(\frac{A-B}{2}\right) \] \[ \cos A + \cos B = 2 \cos\left(\frac{A+B}{2}\right) \cos\left(\frac{A-B}{2}\right) \] 3. **Substituting into Equations**: Substitute the identities into equations (1) and (2): \[ 2 \sin\left(\frac{A+B}{2}\right) \cos\left(\frac{A-B}{2}\right) = \sqrt{\frac{3}{2}} \quad \text{(3)} \] \[ 2 \cos\left(\frac{A+B}{2}\right) \cos\left(\frac{A-B}{2}\right) = \frac{1}{\sqrt{2}} \quad \text{(4)} \] 4. **Dividing Equations**: Divide equation (3) by equation (4): \[ \frac{\sin\left(\frac{A+B}{2}\right)}{\cos\left(\frac{A+B}{2}\right)} = \frac{\sqrt{\frac{3}{2}}}{\frac{1}{2}} \implies \tan\left(\frac{A+B}{2}\right) = \sqrt{3} \] 5. **Finding \( A+B \)**: Since \( \tan\left(\frac{A+B}{2}\right) = \sqrt{3} \), we know: \[ \frac{A+B}{2} = \frac{\pi}{3} \implies A+B = \frac{2\pi}{3} \quad \text{(5)} \] 6. **Using Equation (4)**: From equation (4): \[ 2 \cos\left(\frac{A+B}{2}\right) \cos\left(\frac{A-B}{2}\right) = \frac{1}{\sqrt{2}} \] Substitute \( \frac{A+B}{2} = \frac{\pi}{3} \): \[ 2 \cos\left(\frac{\pi}{3}\right) \cos\left(\frac{A-B}{2}\right) = \frac{1}{\sqrt{2}} \] Since \( \cos\left(\frac{\pi}{3}\right) = \frac{1}{2} \): \[ 2 \cdot \frac{1}{2} \cos\left(\frac{A-B}{2}\right) = \frac{1}{\sqrt{2}} \implies \cos\left(\frac{A-B}{2}\right) = \frac{1}{\sqrt{2}} \] 7. **Finding \( A-B \)**: From \( \cos\left(\frac{A-B}{2}\right) = \frac{1}{\sqrt{2}} \): \[ \frac{A-B}{2} = \frac{\pi}{4} \implies A-B = \frac{\pi}{2} \quad \text{(6)} \] 8. **Solving for \( A \) and \( B \)**: Now we have two equations: \[ A + B = \frac{2\pi}{3} \quad \text{(5)} \] \[ A - B = \frac{\pi}{2} \quad \text{(6)} \] Adding (5) and (6): \[ 2A = \frac{2\pi}{3} + \frac{\pi}{2} \] To add, convert to a common denominator: \[ 2A = \frac{4\pi}{6} + \frac{3\pi}{6} = \frac{7\pi}{6} \implies A = \frac{7\pi}{12} \] ### Final Answer: Thus, the value of \( A \) is: \[ A = \frac{7\pi}{12} \]
Promotional Banner

Similar Questions

Explore conceptually related problems

If 0ltAltBltpi, sin A-sinB=(1)/(sqrt2) and cos A-cos B=sqrt((3)/(2)) , then the value of A+B is equal to

If (sinA)/(sinB)=(sqrt(3))/(2) and (cosA)/(cosB)=(sqrt(5))/(2) , 0 lt A, B lt (pi)/(2) then tanA+tanB is equal to :

In DeltaABC , if sin A + sin B + sin C= 1 + sqrt2 and cos A+cos B+cosC =sqrt2 then the triangle is

If (sinA)/(sinB)=(sqrt(3))/2 and (cosA)/(cosB)=(sqrt(5))/2, 0 < A, B < pi/2, then tanA+tanB is equal to

If sinA+sinB=a and cosA+cosB=b,then cos(A+B)

Let a and b be real numbers such that sina + sinb =1/sqrt(2) , cosa + cosb =sqrt(3)/2 , then

"If" tanA =(1-cosB)/(sinB), "then "tan2A =tanB

"If" tanA =(1-cosB)/(sinB), "then "tan2A =tanB

sin(A+B)=1/sqrt(2) cos(A-B)=sqrt3|2

find the value of sin^(-1)(-sqrt3/2)+cos^(-1)(sqrt3/2)