Home
Class 12
MATHS
If x^(y). y^(x)=16, then the value of (d...

If `x^(y). y^(x)=16`, then the value of `(dy)/(dx)` at (2, 2) is

A

`-1`

B

0

C

1

D

None of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \( x^y \cdot y^x = 16 \) and find the value of \( \frac{dy}{dx} \) at the point (2, 2), we can follow these steps: ### Step 1: Take the logarithm of both sides We start with the equation: \[ x^y \cdot y^x = 16 \] Taking the natural logarithm of both sides gives us: \[ \log(x^y \cdot y^x) = \log(16) \] ### Step 2: Use logarithmic properties Using the property of logarithms that states \( \log(a \cdot b) = \log(a) + \log(b) \), we can rewrite the left side: \[ \log(x^y) + \log(y^x) = \log(16) \] Using the property \( \log(a^b) = b \cdot \log(a) \), we can further simplify: \[ y \cdot \log(x) + x \cdot \log(y) = \log(16) \] ### Step 3: Differentiate both sides with respect to \( x \) Now we differentiate both sides with respect to \( x \): \[ \frac{d}{dx}(y \cdot \log(x)) + \frac{d}{dx}(x \cdot \log(y)) = \frac{d}{dx}(\log(16)) \] Since \( \log(16) \) is a constant, its derivative is 0: \[ \frac{d}{dx}(y \cdot \log(x)) + \frac{d}{dx}(x \cdot \log(y)) = 0 \] ### Step 4: Apply the product rule Using the product rule, we differentiate each term: 1. For \( y \cdot \log(x) \): \[ \frac{dy}{dx} \cdot \log(x) + y \cdot \frac{1}{x} \] 2. For \( x \cdot \log(y) \): \[ \log(y) + x \cdot \frac{1}{y} \cdot \frac{dy}{dx} \] Putting it all together, we have: \[ \frac{dy}{dx} \cdot \log(x) + y \cdot \frac{1}{x} + \log(y) + x \cdot \frac{1}{y} \cdot \frac{dy}{dx} = 0 \] ### Step 5: Substitute \( x = 2 \) and \( y = 2 \) Now we substitute \( x = 2 \) and \( y = 2 \): \[ \frac{dy}{dx} \cdot \log(2) + 2 \cdot \frac{1}{2} + \log(2) + 2 \cdot \frac{1}{2} \cdot \frac{dy}{dx} = 0 \] This simplifies to: \[ \frac{dy}{dx} \cdot \log(2) + 1 + \log(2) + \frac{dy}{dx} = 0 \] ### Step 6: Combine like terms Combining the terms involving \( \frac{dy}{dx} \): \[ \left(\log(2) + 1\right) \frac{dy}{dx} + 1 + \log(2) = 0 \] ### Step 7: Solve for \( \frac{dy}{dx} \) Rearranging gives: \[ \frac{dy}{dx} \left(\log(2) + 1\right) = - (1 + \log(2)) \] Thus, \[ \frac{dy}{dx} = -\frac{1 + \log(2)}{\log(2) + 1} = -1 \] ### Final Answer The value of \( \frac{dy}{dx} \) at the point (2, 2) is: \[ \boxed{-1} \]
Promotional Banner

Similar Questions

Explore conceptually related problems

if y^x-x^y=1 then the value of (dy)/(dx) at x=1 is

if 2^x+2^y=2^(x+y) then the value of (dy)/(dx) at x=y=1

If asin^2(x+y)=b , then find the value of dy/dx

Solution of (dy)/(dx)+2x y=y is

if y=ae^(x)+be^(-3x)+c , then the value of ((d^(3)y)/(dx^(3))+2(d^(2)y)/(dx^(2)))/((dy)/(dx)) is

If (y^(3)-2x^(2)y)dx+(2xy^(2)-x^(3))dy=0, then the value of xysqrt(y^(2)-x^(2)), is

If x^(16)y^9=(x^2+y)^(17) , prove that x(dy)/(dx)=2y

If dy/dx=e^(-2y) and y=0 when x=5, then the value of x for y=3 is

If xsin((y)/(x))dy = (y sin((y)/(x))-x)dx and y(1) = (pi)/(2) then the value of cos((y)/(e^(7))) is __________.

If y(x) is solution of x(dy)/(dx)+2y=x^(2), y(1)=1 then value of y(1/2)= (a) -(49)/(16) (b) (49)/(16) (c) (45)/(8) (d) -(45)/(8)