Home
Class 12
MATHS
Let A=[(0, 2y,z),(x,y,-z),(x,-y,z)] such...

Let `A=[(0, 2y,z),(x,y,-z),(x,-y,z)]` such that `A^(T)A=I`, then the value of `x^(2)+y^(2)+z^(2)` is

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the value of \( x^2 + y^2 + z^2 \) given the matrix \( A \) and the condition that \( A^T A = I \). ### Step-by-Step Solution: 1. **Write the Matrix \( A \)**: \[ A = \begin{pmatrix} 0 & 2y & z \\ x & y & -z \\ x & -y & z \end{pmatrix} \] 2. **Calculate the Transpose of \( A \)**: \[ A^T = \begin{pmatrix} 0 & x & x \\ 2y & y & -y \\ z & -z & z \end{pmatrix} \] 3. **Multiply \( A^T \) and \( A \)**: We need to compute \( A^T A \): \[ A^T A = \begin{pmatrix} 0 & x & x \\ 2y & y & -y \\ z & -z & z \end{pmatrix} \begin{pmatrix} 0 & 2y & z \\ x & y & -z \\ x & -y & z \end{pmatrix} \] 4. **Calculate Each Element of \( A^T A \)**: - The (1,1) entry: \[ 0 \cdot 0 + x \cdot x + x \cdot x = 2x^2 \] - The (1,2) entry: \[ 0 \cdot 2y + x \cdot y + x \cdot (-y) = xy - xy = 0 \] - The (1,3) entry: \[ 0 \cdot z + x \cdot (-z) + x \cdot z = -xz + xz = 0 \] - The (2,1) entry: \[ 2y \cdot 0 + y \cdot x + (-y) \cdot x = yx - yx = 0 \] - The (2,2) entry: \[ 2y \cdot 2y + y \cdot y + (-y) \cdot (-y) = 4y^2 + y^2 + y^2 = 6y^2 \] - The (2,3) entry: \[ 2y \cdot z + y \cdot (-z) + (-y) \cdot z = 2yz - yz - yz = 0 \] - The (3,1) entry: \[ z \cdot 0 + (-z) \cdot x + z \cdot x = -zx + zx = 0 \] - The (3,2) entry: \[ z \cdot 2y + (-z) \cdot y + z \cdot (-y) = 2yz - zy - zy = 0 \] - The (3,3) entry: \[ z \cdot z + (-z) \cdot (-z) + z \cdot z = z^2 + z^2 + z^2 = 3z^2 \] 5. **Form the Resulting Matrix**: Thus, we have: \[ A^T A = \begin{pmatrix} 2x^2 & 0 & 0 \\ 0 & 6y^2 & 0 \\ 0 & 0 & 3z^2 \end{pmatrix} \] 6. **Set \( A^T A = I \)**: Since \( A^T A = I \), we equate the diagonal elements: - \( 2x^2 = 1 \) → \( x^2 = \frac{1}{2} \) - \( 6y^2 = 1 \) → \( y^2 = \frac{1}{6} \) - \( 3z^2 = 1 \) → \( z^2 = \frac{1}{3} \) 7. **Calculate \( x^2 + y^2 + z^2 \)**: \[ x^2 + y^2 + z^2 = \frac{1}{2} + \frac{1}{6} + \frac{1}{3} \] To add these fractions, we find a common denominator (which is 6): \[ = \frac{3}{6} + \frac{1}{6} + \frac{2}{6} = \frac{6}{6} = 1 \] ### Final Answer: \[ x^2 + y^2 + z^2 = 1 \]
Promotional Banner

Similar Questions

Explore conceptually related problems

Find A=[(0,2y,z),(x,y,-z),(x,-y,z)] satisfies A^(T) = A^(-1)

If x,y,z in R & Delta =|(x,x+y,x+y+z),(2x,5x+2y,7x+5y+2z),(3x,7x+3y,9x+7y+3z)|=-16 then the value of x is

If matrix A=[(0, 2,y),( z, x, y),(-z, x-y, z)] satisfies A^T=A^(-1) , find x ,\ y ,\ zdot

If the system of equation 14x-3y+z=12, x-2y=0 and x+2z=0 has a solution (x_(0), y_(0), z_(0)) , then the value of x_(0)^(2)+y_(2)^(2)+z_(2)^(2) is equal to

If x , y ,z in [-1,1] such that cos^(-1)x+cos^1y+cos^(-1)z=3pi, then find the values of (1). x y+y z+z y and (2). x(y+z)+y(z+x)+z(x+y)

If x , y ,z in [-1,1] such that cos^(-1)x+cos^1y+cos^(-1)z=3pi, then find the values of (1) x y+y z+z y and (2) x(y+z)+y(z+x)+z(x+y)

If x , y ,z in [-1,1] such that cos^(-1)x+cos^1y+cos^(-1)z=3pi, then find the values of (1) x y+y z+z x and (2) x(y+z)+y(z+x)+z(x+y)

If (x_(0), y_(0), z_(0)) is any solution of the system of equations 2x-y-z=1, -x-y+2z=1 and x-2y+z=2 , then the value of (x_(0)^(2)-y_(0)^(2)+1)/(z_(0)) (where, z_(0) ne 0 ) is

If x > 0, y > 0, z>0 and x + y + z = 1 then the minimum value of x/(2-x)+y/(2-y)+z/(2-z) is:

Given that x ,y ,z are positive real such that x y z=32. If the minimum value of x^2+4x y+4y^2+2z^2 is equal m , then the value of m//16 is.