Home
Class 12
MATHS
If the range of f(x)=tan^(1)x+2sin^(-1)x...

If the range of `f(x)=tan^(1)x+2sin^(-1)x+cos^(-1)x` is `[a, b]`, then

A

`a=(pi)/(4)`

B

`a=-(pi)/(2)`

C

`b=(5pi)/(4)`

D

`b=(3pi)/(2)`

Text Solution

AI Generated Solution

The correct Answer is:
To find the range of the function \( f(x) = \tan^{-1}(x) + 2 \sin^{-1}(x) + \cos^{-1}(x) \), we will follow these steps: ### Step 1: Rewrite the function We can rewrite the function by using the identity: \[ \sin^{-1}(x) + \cos^{-1}(x) = \frac{\pi}{2} \] Thus, we can express \( f(x) \) as: \[ f(x) = \tan^{-1}(x) + 2 \sin^{-1}(x) = \tan^{-1}(x) + \sin^{-1}(x) + \sin^{-1}(x) + \cos^{-1}(x) \] This simplifies to: \[ f(x) = \tan^{-1}(x) + \frac{\pi}{2} + \sin^{-1}(x) \] ### Step 2: Determine the domain Next, we need to find the common domain of \( \tan^{-1}(x) \) and \( \sin^{-1}(x) \): - The domain of \( \tan^{-1}(x) \) is \( (-\infty, \infty) \). - The domain of \( \sin^{-1}(x) \) is \( [-1, 1] \). The common domain of both functions is: \[ [-1, 1] \] ### Step 3: Find the minimum value To find the minimum value of \( f(x) \) on the interval \( [-1, 1] \), we will evaluate \( f(x) \) at the endpoints: - At \( x = -1 \): \[ f(-1) = \tan^{-1}(-1) + \frac{\pi}{2} + \sin^{-1}(-1) \] Calculating each term: \[ \tan^{-1}(-1) = -\frac{\pi}{4}, \quad \sin^{-1}(-1) = -\frac{\pi}{2} \] Thus, \[ f(-1) = -\frac{\pi}{4} + \frac{\pi}{2} - \frac{\pi}{2} = -\frac{\pi}{4} \] ### Step 4: Find the maximum value Now, we will evaluate \( f(x) \) at the other endpoint: - At \( x = 1 \): \[ f(1) = \tan^{-1}(1) + \frac{\pi}{2} + \sin^{-1}(1) \] Calculating each term: \[ \tan^{-1}(1) = \frac{\pi}{4}, \quad \sin^{-1}(1) = \frac{\pi}{2} \] Thus, \[ f(1) = \frac{\pi}{4} + \frac{\pi}{2} + \frac{\pi}{2} = \frac{\pi}{4} + \pi = \frac{5\pi}{4} \] ### Step 5: Conclusion The minimum value of \( f(x) \) is \( -\frac{\pi}{4} \) and the maximum value is \( \frac{5\pi}{4} \). Therefore, the range of \( f(x) \) is: \[ \left[-\frac{\pi}{4}, \frac{5\pi}{4}\right] \] ### Final Answer The values of \( a \) and \( b \) are: \[ a = -\frac{\pi}{4}, \quad b = \frac{5\pi}{4} \]
Promotional Banner

Similar Questions

Explore conceptually related problems

Range of f(x)=sin^(-1)x+tan^(-1)x+sec^(-1)x is

Find the range of f(x)=sin^(-1)x+tan^(-1)x+cos^(-1)xdot

Find the range of f(x)=sin^(-1)x+tan^(-1)x+cos^(-1)xdot

Range of f(x)=sin^(- 1)x+sec^(- 1)x is

Range of f(x)=cos^(- 1)x+2sin^(- 1)x+3tan^(- 1)x is

Find the range of f(x)= sin^-1x+tan^-1x+cos^-1x

Find the range of f(x) = sin^(-1) x + tan^(-1) x + cos^(-1) x

Find the range of f(x)=cos^4x+sin^2x-1 .

Find the range of f(x)=sin^2x-sinx+1.

Find the range of f(x)=sin^2x-sinx+1.