Home
Class 12
MATHS
If int(0)^(1)x^(11)e^(-x^(24))dx=A, and ...

If `int_(0)^(1)x^(11)e^(-x^(24))dx=A`, and `int_(0)^(1)x^(3)e^(-x^(8))dx=B`, then the relation between A and B is

A

`A = 3B`

B

`B = 3A`

C

`A+3B=0`

D

`B+3A=0`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the relationship between the two integrals given: 1. \( A = \int_{0}^{1} x^{11} e^{-x^{24}} \, dx \) 2. \( B = \int_{0}^{1} x^{3} e^{-x^{8}} \, dx \) ### Step-by-step Solution: **Step 1: Rewrite the integral for A.** We start with the integral for \( A \): \[ A = \int_{0}^{1} x^{11} e^{-x^{24}} \, dx \] **Step 2: Change of variables.** Let's make a substitution. Set \( t = x^3 \). Then, we differentiate: \[ dt = 3x^2 \, dx \quad \Rightarrow \quad dx = \frac{dt}{3x^2} \] Since \( x = t^{1/3} \), we have: \[ x^2 = (t^{1/3})^2 = t^{2/3} \] Thus: \[ dx = \frac{dt}{3t^{2/3}} \] **Step 3: Change the limits of integration.** When \( x = 0 \), \( t = 0^3 = 0 \). When \( x = 1 \), \( t = 1^3 = 1 \). Therefore, the limits remain from 0 to 1. **Step 4: Substitute into the integral.** Now substitute \( x \) and \( dx \) into the integral for \( A \): \[ A = \int_{0}^{1} (t^{1/3})^{11} e^{-(t^{1/3})^{24}} \cdot \frac{dt}{3t^{2/3}} \] This simplifies to: \[ A = \int_{0}^{1} \frac{t^{11/3} e^{-t^8}}{3t^{2/3}} \, dt = \frac{1}{3} \int_{0}^{1} t^{11/3 - 2/3} e^{-t^8} \, dt = \frac{1}{3} \int_{0}^{1} t^{9/3} e^{-t^8} \, dt \] Thus: \[ A = \frac{1}{3} \int_{0}^{1} t^{3} e^{-t^8} \, dt \] **Step 5: Recognize the integral.** Notice that: \[ \int_{0}^{1} t^{3} e^{-t^8} \, dt = B \] Therefore: \[ A = \frac{1}{3} B \] **Step 6: Express the relationship between A and B.** From the above, we can express \( B \) in terms of \( A \): \[ B = 3A \] ### Conclusion: Thus, the relationship between \( A \) and \( B \) is: \[ B = 3A \]
Promotional Banner

Similar Questions

Explore conceptually related problems

int_(0)^(1)x e^(x^(2)) dx

int_(0)^(1)e^(2x)e^(e^(x) dx =)

int_(0)^(1)(dx)/(e^(x)+e^(-x))

If I=int_(0)^(1) (1+e^(-x^2)) dx then, s

int_(0)^(1) (dx)/(e^(x)+e^(-x))

If int _(0)^(1) e ^(-x ^(2)) dx =0, then int _(0)^(1) x ^(2)e ^(-x ^(2)) dx is equal to

If int _(0)^(1) e ^(-x ^(2)) dx =a, then int _(0)^(1) x ^(2)e ^(-x ^(2)) dx is equal to

int_(-1)^(1)e^(2x)dx

If int_(0)^(1) x e^(x^(2) ) dx=alpha int_(0)^(1) e^(x^(2)) dx , then

int_(0)^(2) (e^(-1//x))/(x^(2)) dx