Home
Class 12
MATHS
Value of (3+cot80^0cot20^0)/(cot80^0+cot...

Value of `(3+cot80^0cot20^0)/(cot80^0+cot20^0)` is equal to `cot20^0` (b) `tan50^0` `cot50^0` (d) `cotsqrt(20^0)`

Text Solution

Verified by Experts

The correct Answer is:
3.6
Promotional Banner

Similar Questions

Explore conceptually related problems

Value of (3+cot80^0cot20^0)/(cot80^0+cot20^0) is equal to (a) cot20^0 (b) tan50^0 (c) cot50^0 (d) cotsqrt(20^0)

The value of (cot84^(@)cot48^(@))/(cot66^(@)cot78^(@)) is equal to

The value of (3+cot76^@cot16^@)/(cot76^@+cot16^@) is

cot 6^0 cot 42^0 cot 66^0 cot 78^0=1

(cos 10^0+sin 10^0)/(cos 10^0-sin 10^0) is equal to tan55^0 b. cos 55^0 c. -tan35^0 d. -cot35^0

Value of "cot"40^0dotcot 20^0(4sin 10^0-1) is -1 (b)1 (c) 2 (d) 0

The value of (tan55^0)/(cot35^0)+cot1^0cot2^0cot3^0cot90^0,i s -2 (b) 2 (c) 1 (d) 0

Find the value of (cot25^0+cot55^0)/(tan25^0+tan55^0)+(cot55^0+cot100^0)/(tan55^0+tan100^0)+(cot100^0+cot25^0)/(tan100^0+tan25^0)

The value of lim_(x to 0) ((1)/(x^(2)) - cot x) equals

Show that tan 75^0 + cot 75^0 = 4